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Numerical Analysis – Lecture 131

Pivoting Naive LU factorization fails when, for example, A1,1 = 0. The remedy is to exchange rows of A, a
technique called pivoting. Specifically, at the k’th step of the algorithm we look for another row p ≥ k such that
the entry (Ak−1)p,k is nonzero. We permute rows p and k and proceed. The algorithm with pivoting can thus
be written as follows:

• Let A0 = A.

• For k = 1, . . . , n: find p ≥ k such that (Ak−1)p,k 6= 0. Let Pk be the permutation matrix2 that swaps
positions k and p. Let u>k be the k’th row of PkAk−1 and lk be 1

(PkAk−1)k,k
× (k’th column of PkAk−1).

Set Ak = PkAk−1 − lku
T
k .

If we unroll the algorithm we have A1 = P1A0− l1u
T
1 , A2 = P2P1A−P2l1u

>
1 − l2u

T
2 , etc. and at the end, since

An = 0 (and Pn the identity matrix):

Pn−1 · · ·P1A = l̃1u
>
1 + · · ·+ l̃nu

>
n (5.2)

where l̃k = Pn−1 . . . Pk+1lk. Note that the first k− 1 components of l̃k are zero since this is the case for lk and
since the permutations Pk+1, . . . , Pn−1 only permute components of index ≥ k + 1. Therefore, Equation (5.2)
can be rewritten as:

PA = L̃U

where P = Pn−1 . . . P1 is a permutation matrix, and L̃ = [l̃1 . . . l̃n] is unit lower triangular, and U is upper
triangular.

There is one situation where the algorithm above can still fail: this if for some k, all the entries in the k’th
column of Ak−1 are zero. In this case one can choose lk to be the vector with a 1 at position k and zero
elsewhere, and choose u>k to be the k’th row of Ak−1, and Pk = I (identity matrix). With this choice, the first
k rows and columns of Ak = Ak−1 − lku

>
k become zero as desired (this is not the only choice of Pk, lk,uk that

works in this case; other choices are possible).

We have thus shown that for any matrix A (even singular) one can find a permutation matrix P such that PA
has an LU factorization.

Pivoting is not only important to find an element that is nonzero, but also for the overall numerical stability of
the algorithm. A common choice of pivot p is to take p ≥ k such that |(Ak−1)p,k| is maximum. This ensures in
particular that the entries of lk are all bounded above by 1 in magnitude.

Symmetric matrices Let A be an n×n symmetric matrix (i.e., Ak,` = A`,k). An analogue of LU factorization
that takes advantage of symmetry consists in expressing A in the form of the product LDL>, where L is
n × n lower triangular, with ones on its diagonal and D is a diagonal matrix. This is a special case of an LU
factorization with U = DL>. If we let l1, . . . , ln be the columns of L then this factorization takes the form
A =

∑n
k=1 Dk,klkl

>
k . To compute this factorization, we can use an algorithm very similar to the one for the

computation of LU factorization (without pivoting): Set A0 = A and for k = 1, 2, . . . , n let lk be the multiple
of the kth column of Ak−1 such that Lk,k = 1. Set Dk,k = (Ak−1)k,k and form Ak = Ak−1 −Dk,klkl

>
k .

Example Let A = A0 =

[
2 4
4 11

]
. Hence l1 =

[
1
2

]
, D1,1 = 2 and

A1 = A0 −D1,1l1l
>
1 =

[
2 4
4 11

]
− 2

[
1 2
2 4

]
=

[
0 0
0 3

]
.

We deduce that l2 =

[
0
1

]
, D2,2 = 3 and A =

[
1 0
2 1

] [
2 0
0 3

] [
1 2
0 1

]
.

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
2A permutation matrix is a matrix with exactly one 1 in each row and in each column; the remaining entries being 0. For

example P =
[
0 1
1 0

]
is a permutation matrix and PA exchanges the two rows of A.
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Symmetric positive definite matrices Recall: A is positive definite if x>Ax > 0 for all x 6= 0.

Theorem Let A be a real n × n symmetric matrix. It is positive definite if and only if it has an LDL>

factorization in which the diagonal elements of D are all positive.

Proof. Suppose that A = LDL> and let x ∈ Rn \ {0}. Since L is nonsingular (it is lower triangular and
all diagonal elements are equal to 1), y := L>x 6= 0. Then x>Ax = y>Dy =

∑n
k=1 Dk,ky

2
k > 0, hence A is

positive definite.
Conversely, suppose that A is positive definite. We wish to demonstrate that an LDL> factorization exists.
We denote by ek ∈ Rn the kth unit vector. Hence e>1 Ae1 = A1,1 > 0 and l1 & D1,1 are well defined. We now
show that (Ak−1)k,k > 0 for k = 1, 2, . . .. This is true for k = 1 and we continue by induction, assuming that

Ak−1 = A−
∑k−1

j=1 Dj,jljl
>
j has been computed successfully.

Define x ∈ Rn as the solution of the following system of equations: l>j x = 0, j = 1, . . . , k − 1, xk = 1 and
xj = 0 for j = k + 1, . . . , n. This is a system of n linear equations in the unknown x ∈ Rn. The matrix of this
system of equations is upper triangular with ones on the diagonal hence it is invertible and our system has a
unique solution. Now observe that since the first k − 1 rows & columns of Ak−1 vanish, and since xk = 1 and
the components k + 1, . . . , n of x vanish we have (Ak−1)k,k = x>Ak−1x. Thus, from the definition of Ak−1 and
the choice of x,

(Ak−1)k,k = x>Ak−1x = x>

A−
k−1∑
j=1

Dj,jljl
>
j

x = x>Ax−
k−1∑
j=1

Dj,j(l
>
j x)2 = x>Ax > 0,

as required. Hence (Ak−1)k,k > 0, k = 1, 2, . . . , n, and the factorization exists. 2

Conclusion It is possible to check if a symmetric matrix is positive definite by trying to form its LDL>

factorization.

Cholesky factorization Define D1/2 as the diagonal matrix whose (k, k) element is D
1/2
k,k , hence D1/2D1/2 = D.

Then, A being positive definite, we can write

A = (LD1/2)(D1/2L>) = (LD1/2)(LD1/2)>.

In other words, letting L̃ := LD1/2, we obtain the Cholesky factorization A = L̃L̃>.

Sparse matrices It is often required to solve very large systems Ax = b (n = 105 is considered small in this
context!) where nearly all the elements of A are zero. Such a matrix is called sparse and efficient solution of
Ax = b should exploit sparsity. In particular, we wish the matrices L and U to inherit as much as possible of
the sparsity of A and for the cost of computation to be determined by the number of nonzero entries, rather
than by n. The following theorem shows that certain zeros of A are always inherited by an LU factorization.

Theorem Let A = LU be an LU factorization (without pivoting) of a sparse matrix. Then all leading zeros in
the rows of A to the left of the diagonal are inherited by L and all the leading zeros in the columns of A above
the diagonal are inherited by U .

Proof We assume that Uk,k 6= 0 for all k = 1, . . . , n which is the same as saying that (Ak−1)k,k 6= 0 when
running the LU factorization algorithm (without pivoting). If Ai,1 = 0 this means that Li,1U1,1 = 0 and so
Li,1 = 0. If furthermore Ai,2 = 0 we get Li,1U1,2 +Li,2U2,2 = 0 which implies Li,2 = 0 since Li,1 = 0. In general
we get that if Ai,1 = · · · = Ai,j = 0 where j < i then Li,1 = · · · = Li,j = 0. A similar reasoning applies for
leading zeros in the columns of A above the diagonal. 2

Banded matrices The matrix A is a banded matrix if there exists an integer r < n such that Ai,j = 0 for
|i − j| > r, i, j = 1, 2, . . . , n. In other words, all the nonzero elements of A reside in a band of width 2r + 1
along the main diagonal. In that case, according to the previous theorem, A = LU implies that Li,j = Ui,j = 0
∀ |i− j| > r and sparsity structure is inherited by the factorization.
In general, the expense of calculating an LU factorization of an n× n dense matrix A is O

(
n3
)

operations and

the expense of solving Ax = b, provided that the factorization is known, is O
(
n2
)
. However, in the case of a

banded A, we need just O
(
r2n
)

operations to factorize and O(rn) operations to solve a linear system. If r � n
this represents a very substantial saving!
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