
Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 1

1

What is numerical analysis?

Numerical analysis is the study of algorithms for problems in continuous mathematics.2 The key word here
is algorithms. We are looking for algorithms that run fast and that are stable against various sources of
errors and “noise”. Some examples of problems from continuous mathematics include:

• Algebraic equations: Solve f(x) = 0 where f : Rn ! R is a given function.

• Di↵erential equations: Solve dx

dt

= f(x) where f : Rn ! Rn is a given function.

• Optimization: Find min{f(x) : x 2 Rn} where f : Rn ! R is a given function.

Needless to say that such problems arise in many di↵erent application areas!

A note about computational complexity We measure the complexity of an algorithm by the number
of elementary operations (+,�,⇥,÷) it needs. We use the Big-Oh notation, e.g., O(n) or O�

n

2
�
where n is

the size of the input. More precisely an algorithm has complexity O(f(n)) if the number of operations it
needs is at most C · f(n) where C > 0 is a constant.

1 Polynomial interpolation

We denote by P
n

[x] the linear space of all real polynomials of degree at most n.

1.1 The interpolation problem

Given n+1 distinct real points x0, x1, . . . , xn

and real numbers f0, f1, . . . , fn, we seek a polynomial p 2 P
n

[x]
such that p(x

i

) = f

i

, i = 0, 1, . . . , n. Such a polynomial is called an interpolant. Note that a polynomial
p 2 P

n

[x] has n + 1 degrees of freedom, while interpolation at x0, x1, . . . , xn

constitutes n + 1 conditions.
This, intuitively, justifies seeking an interpolant from P

n

[x].

1.2 The Lagrange formula

Although, in principle, we may solve a linear problem with n + 1 unknowns to determine a polynomial
interpolant, this can be accomplished more easily by using the explicit Lagrange formula. We claim that

p(x) =
nX

k=0

f

k

nY

`=0
` 6=k

x� x

`

x

k

� x

`

, x 2 R.

Note that p 2 P
n

[x], as required. We wish to show that it interpolates the data. Define

L

k

(x) :=
nY

`=0
` 6=k

x� x

`

x

k

� x

`

, k = 0, 1, . . . , n

(Lagrange cardinal polynomials). It is trivial to verify that L
j

(x
j

) = 1 and L

j

(x
k

) = 0 for k 6= j, hence

p(x
j

) =
nX

k=0

f

k

L

k

(x
j

) = f

j

, j = 0, 1, . . . , n,

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

2
This definition is taken from the essay The definition of numerical analysis by L. N. Trefethen.

1

and p is an interpolant,
Uniqueness Suppose that both p 2 P

n

[x] and q 2 P
n

[x] interpolate to the same n + 1 data. Then the
nth degree polynomial p � q vanishes at n + 1 distinct points. But the only nth-degree polynomial with
� n+ 1 zeros is the zero polynomial. Therefore p� q ⌘ 0 and the interpolating polynomial is unique.

Complexity For each k = 0, . . . , n, evaluating L

k

(x) takes O(n) operations, and thus the total complex-
ity of evaluating p(x) using the Lagrange formula is O�

n

2
�
.

1.3 The error of polynomial interpolation

Let [a, b] be a closed interval of R. We denote by C[a, b] the space of all continuous functions from [a, b] to R
and let Cs[a, b], where s is a positive integer, stand for the linear space of all functions in C[a, b] that possess
s continuous derivatives.

Theorem Given f 2 C

n+1[a, b], let p 2 P
n

[x] interpolate the values f(x
i

), i = 0, 1, . . . , n, where
x0, . . . , xn

2 [a, b] are pairwise distinct. Then for every x 2 [a, b] there exists ⇠ 2 [a, b] such that

f(x)� p(x) =
1

(n+ 1)!
f

(n+1)(⇠)
nY

i=0

(x� x

i

). (1.1)

Proof. The formula (1.1) is true when x = x

j

for j 2 {0, 1, . . . , n}, since both sides of the equation vanish.
Let x 2 [a, b] be any other point and define

�(t) := f(t)�
✓
p(t) + (f(x)� p(x))

Q
n

i=0(t� x

i

)Q
n

i=0(x� x

i

)

◆
, t 2 [a, b].

[Note: The variable in � is t, whereas x is a fixed parameter.] Note that �(x
j

) = 0, j = 0, 1, . . . , n, and
�(x) = 0. Hence, � has at least n+ 2 distinct zeros in [a, b]. Moreover, � 2 C

n+1[a, b].
We now apply the Rolle theorem: if the function g 2 C

1[a, b] vanishes at two distinct points in [a, b] then its
derivative vanishes at an intermediate point. We deduce that �0 vanishes at (at least) n+ 1 distinct points
in [a, b]. Next, applying Rolle to �

0, we conclude that �00 vanishes at n points in [a, b]. In general, we prove
by induction that �(s) vanishes at n+2� s distinct points of [a, b] for s = 0, 1, . . . , n+1. Letting s = n+1,
we have �

(n+1)(⇠) = 0 for some ⇠ 2 [a, b]. Hence

0 = �

(n+1)(⇠) = f

(n+1)(⇠)�
✓
p

(n+1)(⇠) + (f(x)� p(x))
(n+ 1)!Q
n

i=0(x� x

i

)

◆

where we used the fact that dn+1

dtn+1

Q
n

i=0(t � x

i

) = (n + 1)!. Using the fact that p

(n+1) ⌘ 0 (since p is a
polynomial of degree n) we finally get (1.1). 2

Runge’s example We interpolate f(x) = 1/(1 + x

2), x 2 [�5, 5], at the equally-spaced points x

j

=
�5 + 10 j

n

, j = 0, 1, . . . , n. Some of the errors are displayed below

x f(x)� p(x)
Q

n

i=0(x� x

i

)

0.75 3.2⇥ 10�3 �2.5⇥ 106

1.75 7.7⇥ 10�3 �6.6⇥ 106

2.75 3.6⇥ 10�2 �4.1⇥ 107

3.75 5.1⇥ 10�1 �7.6⇥ 108

4.75 4.0⇥ 10+2 �7.3⇥ 1010

Table: Errors for n = 20 Figure: Errors for n = 15
The growth in the error is explained by the product term in (1.1) (the rightmost column of the table).

Adding more interpolation points makes the largest error even worse. A remedy to this state of a↵airs is to
cluster points toward the end of the range. A considerably smaller error is attained for x

j

= 5 cos (n�j)⇡
n

,
j = 0, 1, . . . , n (so-called Chebyshev points). It is possible to prove that this choice of points minimizes the
magnitude of max

x2[�5,5] |
Q

n

i=0(x� x

i

)|.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 2

1

In this lecture, we will see another way to compute the interpolant polynomial, known as Newton’s interpo-

lation formula. Before presenting this formula we first need the definition of divided di↵erences.

1.2 Divided di↵erences: a definition

Given pairwise-distinct points x0, x1, . . . , xn

2 [a, b], we let p 2 P
n

[x] interpolate f 2 C[a, b] there. The
coe�cient of x

n in p is called the divided di↵erence and denoted by f [x0, x1, . . . , xn

]. We say that this
divided di↵erence is of degree n.

We can derive f [x0, . . . , xn

] from the Lagrange formula,

f [x0, x1, . . . , xn

] =
nX

k=0

f(x
k

)
nY

`=0
` 6=k

1

x

k

� x

`

. (1.2)

It is easy to verify that f [x0] = f(x0) and f [x0, x1] =
f(x1)�f(x0)

x1�x0
. We can already see why it is called divided

di↵erences. In fact one has the following general fact:

Theorem Suppose that x0, x1, . . . , xn+1 are pairwise distinct, where n � 0. Then

f [x0, x1, . . . , xn+1] =
f [x1, x2, . . . , xn+1]� f [x0, x1, . . . , xn

]

x

n+1 � x0
. (1.3)

Proof. Let p, q 2 P
n

[x] be the polynomials that interpolate f at

{x0, x1, . . . , xn

} and {x1, x2, . . . , xn+1}

respectively and define

r(x) :=
(x� x0)q(x) + (x

n+1 � x)p(x)

x

n+1 � x0
2 P

n+1[x].

We readily verify that r(x
i

) = f(x
i

), i = 0, 1, . . . , n + 1. Hence r is the (n + 1)-degree interpolating
polynomial and f [x0, . . . , xn+1] is the coe�cient of x

n+1 therein. The recurrence (1.3) follows from the
definition of divided di↵erences. 2

From this recursive definition it is natural to think that divided di↵erences can approximate the derivatives
of f . This is made precise in the following theorem:

Theorem Let [a, b] be the shortest interval that contains x0, x1, . . . , xn

and let f 2 C

n[a, b]. Then there
exists ⇠ 2 [a, b] such that

f [x0, x1, . . . , xn

] = 1
n!f

(n)(⇠). (1.4)

Proof. Let p be the interpolating polynomial. The error function f � p has at least n + 1 zeros in
[a, b] and, applying Rolle’s theorem n times, it follows that f

(n) � p

(n) vanishes at some ⇠ 2 [a, b]. But
p(x) = 1

n!p
(n)(⇣)xn + lower order terms (for any ⇣ 2 R), therefore, letting ⇣ = ⇠,

f [x0, x1, . . . , xn

] = 1
n!p

(n)(⇠) = 1
n!f

(n)(⇠)

and we deduce (1.4). 2

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

1.3 The Newton interpolation formula

We now present the Newton interpolation formula, which is an alternative to the Lagrange formula we saw in
Lecture 1. Again, f(x

i

), i = 0, 1, . . . , n, are given and we seek p 2 P
n

[x] such that p(x
i

) = f(x
i

), i = 0, . . . , n.

Theorem Suppose that x0, x1, . . . , xn

are pairwise distinct. The polynomial

p

n

(x) := f [x0] + f [x0, x1](x� x0) + · · ·+ f [x0, x1, . . . , xn

]
n�1Y

i=0

(x� x

i

) 2 P
n

[x] (1.5)

obeys p
n

(x
i

) = f(x
i

), i = 0, 1, . . . , n.
Proof. By induction on n. The statement is obvious for n = 0 and we suppose that it is true for n. We

now prove that p

n+1(x) � p

n

(x) = f [x0, x1, . . . , xn+1]
Q

n

i=0(x � x

i

). Clearly, p
n+1 � p

n

2 P
n+1[x] and the

coe�cient of xn+1 therein is, by definition, f [x0, . . . , xn+1]. Moreover, p
n+1(xi

)� p

n

(x
i

) = 0, i = 0, 1, . . . , n,
hence it is a multiple of

Q
n

i=0(x� x

i

), and this proves the asserted form of p
n+1 � p

n

. The explicit form of
p

n+1 follows by adding p

n+1 � p

n

to p

n

. 2

Evaluating the interpolant using Newton’s formulaWe saw last lecture that evaluating the interpolant
using Lagrange’s formula requires O�n2

�
operations, where n is the number of interpolation points. What

about the Newton formula? To evaluate the Newton formula we first need to compute the divided di↵erences.
These can be computed using the recursive formula via the divided di↵erence table, in the following manner:

f [x0]

f [x1]

f [x2]

...

f [x
n

]

PPq

⇣⇣1
PPq

⇣⇣1
PPq

⇣⇣1

f [x0, x1]

f [x1, x2]

f [x
n�1, xn

]

PPq

⇣⇣1
PPq

⇣⇣1

f [x0, x1, x2]

f [x
n�2, xn�1, xn

]

PPq

⇣⇣1

· · ·

· · ·

f [x0, x1, . . . , xn

]

The recursive formula allows us to compute all the quantities in this table (i.e., all the {f [x
j

, x1, . . . , xl

]}0jln

),
column by column, in O�n2

�
operations.

Having computed the divided di↵erences, the evaluation of the Newton formula (1.5) can be done in just
O(n) time using the Horner scheme, i.e., by writing the Newton formula in the following equivalent way

p

n

(x) = f [x0] + (x� x0)

f [x0, x1] + (x� x1)

⇣
f [x0, x1, x2] + . . .

⌘!
.

On the other hand, the Lagrange formula is often better when we wish to manipulate the interpolation
polynomial as part of a larger mathematical expression. We’ll see an example in the section on Gaussian

quadrature.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 31

2 Orthogonal polynomials

2.1 Orthogonality in general linear spaces

We have already seen the scalar product hx,yi =
P

n

i=1 xi

y
i

, acting on x,y 2 Rn. Likewise, given arbitrary
weights w1, w2, . . . , wn

> 0, we may define hx,yi =
P

n

i=1 wi

x
i

y
i

. In general, a scalar (or inner) product is any
function V⇥ V ! R, where V is a vector space over the reals, subject to the following three axioms:
Symmetry: hx,yi = hy,xi 8x,y 2 V;
Nonnegativity: hx,xi � 0 8x 2 V and hx,xi = 0 i↵ x = 0; and
Linearity: hax+ by, zi = ahx, zi+ bhy, zi 8x,y, z 2 V, a, b 2 R.
Given a scalar product, we may define orthogonality: x,y 2 V are orthogonal if hx,yi = 0.
Let V = C[a, b], w 2 V be a fixed positive function and define

hf, gi :=
Z

b

a

w(x)f(x)g(x) dx (2.1)

for all f, g 2 V. It is easy to verify all three axioms of the scalar product.

2.2 Orthogonal polynomials – definition, existence, uniqueness

Given a scalar product in V = P[x] (the vector space of polynomials in x, with no bound on the degree), we
seek to define a sequence of polynomials p0, p1, p2, . . . such that:

• deg(p
n

) = n for all n � 0; and

• hp
n

, p
m

i = 0 for all n 6= m.

This sequence will be called the orthogonal polynomials, and p
n

will be called the n’th orthogonal polynomial.
Observe that for such sequence, (p0, . . . , pn) is an orthogonal basis of P

n

[x] for any n � 0. Note: Di↵erent
scalar products in general lead to di↵erent orthogonal polynomials.

The existence of orthogonal polynomials is the object of the next theorem. A polynomial in P
n

[x] is monic if
the coe�cient of xn therein equals one.

Theorem For every n � 0 there exists a unique monic orthogonal polynomial p
n

of degree n.

Proof. We let p0(x) ⌘ 1 and prove the theorem by induction on n. Thus, suppose that p0, p1, . . . , pn satisfy
the induction hypothesis. To define p

n+1 let q(x) := xn+1 2 P
n+1[x] and, motivated by the Gram–Schmidt

algorithm, choose

p
n+1(x) = q(x)�

nX

k=0

hq, p
k

i
hp

k

, p
k

ipk(x). (2.2)

Clearly, p
n+1 2 P

n+1[x] and it is monic (since all the terms in the sum are of degree  n).
Let m 2 {0, 1, . . . , n}. It follows from (2.2) and the induction hypothesis that

hp
n+1, pmi = hq, p

m

i �
nX

k=0

hq, p
k

i
hp

k

, p
k

i hpk, pmi = hq, p
m

i � hq, p
m

i
hp

m

, p
m

i hpm, p
m

i = 0.

Hence, p
n+1 is orthogonal to p0, . . . , pn. To prove uniqueness, we suppose the existence of two monic orthogonal

polynomials p
n+1, p̃n+1 2 P

n+1[x]. Let p := p
n+1 � p̃

n+1 2 P
n

[x], hence hp
n+1, pi = hp̃

n+1, pi = 0, and this
implies

0 = hp
n+1, pi � hp̃

n+1, pi = hp
n+1 � p̃

n+1, pi = hp, pi,

and we deduce p ⌘ 0. 2

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Example Legendre polynomials Define the scalar product hf, gi :=
R 1
�1 f(x)g(x) dx for f, g 2 P[x]. The orthog-

onal polynomials arising from this scalar product is called Legendre polynomials. The first polynomials of this
sequence are:

p0(x) = 1, p1(x) = x, p2(x) = x2 � (1/3), p3(x) = x3 � (3/5)x, p4(x) = x4 � (30/35)x2 + (3/35).

Well-known examples of orthogonal polynomials include:

Name Notation Interval [a, b] Weight function
Legendre P

n

[�1, 1] w(x) ⌘ 1
Chebyshev T

n

[�1, 1] w(x) = (1� x2)�1/2

Laguerre L
n

[0,1) w(x) = e�x

Hermite H
n

(�1,1) w(x) = e�x

2

The weight function refers to the function w in the scalar product definition of Equation (2.1).

2.3 The three-term recurrence relation

How to construct orthogonal polynomials? (2.2) might help, but it su↵ers from loss of accuracy due to impre-
cisions in the calculation of scalar products. A considerably better procedure follows from our next theorem.
For the next theorem we assume the scalar product satisfies hxp, qi = hp, xqi for any p, q 2 P[x].
Theorem Assuming the scalar product on P[x] satisfies hxp, qi = hp, xqi for all p, q 2 P[x], monic orthogonal
polynomials are given by the formula

p�1(x) ⌘ 0, p0(x) ⌘ 1,

p
n+1(x) = (x� ↵

n

)p
n

(x)� �
n

p
n�1(x), n = 0, 1, . . . , (2.3)

where

↵
n

:=
hp

n

, xp
n

i
hp

n

, p
n

i , �
n

=
hp

n

, p
n

i
hp

n�1, pn�1i
> 0.

Remark: The assumption hxp, qi = hp, xqi on the scalar product is satisfied by most common examples of
scalar products. It is satisfied for example by (2.1).
Proof. Pick n � 0 and let (x) := p

n+1(x) � (x � ↵
n

)p
n

(x) + �
n

p
n�1(x). Since p

n

and p
n+1 are monic, it

follows that 2 P
n

[x]. Moreover, because of orthogonality of p
n�1, pn, pn+1,

h , p
`

i = hp
n+1, p`i � hp

n

, (x� ↵
n

)p
`

i+ �
n

hp
n�1, p`i = 0, ` = 0, 1, . . . , n� 2.

Because of monicity, xp
n�1 = p

n

+ q, where q 2 P
n�1[x]. Thus, from the definition of ↵

n

,�
n

,

h , p
n�1i = �hp

n

, xp
n�1i+ �

n

hp
n�1, pn�1i = �hp

n

, p
n

i+ �
n

hp
n�1, pn�1i = 0,

h , p
n

i = �hxp
n

, p
n

i+ ↵
n

hp
n

, p
n

i = 0.

Every p 2 P
n

[x] that obeys hp, p
`

i = 0, ` = 0, 1, . . . , n, must necessarily be the zero polynomial. For suppose
that it is not so and let xs be the highest power of x in p. Then hp, p

s

i 6= 0, which is impossible. We deduce
that ⌘ 0, hence (2.3) is true. 2

Example Chebyshev polynomials We choose the scalar product

hf, gi :=
Z 1

�1
f(x)g(x)

dxp
1� x2

, f, g 2 C[�1, 1]

and define T
n

2 P
n

[x] by the relation T
n

(cos ✓) = cos(n✓). Hence T0(x) ⌘ 1, T1(x) = x, T2(x) = 2x2 � 1 etc.
Changing the integration variable,

hT
n

, T
m

i =
Z 1

�1
T
n

(x)T
m

(x)
dxp
1� x2

=

Z
⇡

0
cosn✓ cosm✓ d✓ = 1

2

Z
⇡

0
[cos(n+m)✓ + cos(n�m)✓] d✓ = 0

whenever n 6= m. The recurrence relation for Chebyshev polynomials is particularly simple, T
n+1(x) =

2xT
n

(x)�T
n�1(x), as can be verified at once from the identity cos[(n+1)✓]+cos[(n�1)✓] = 2 cos(✓) cos(n✓). Note

that the T
n

s aren’t monic, hence the inconsistency with (2.3). To obtain monic polynomials take T
n

(x)/2n�1,
n � 1.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 4

1

2.4 Least-squares polynomial fitting

Consider a scalar product

hg, hi =
Z

b

a

w(x)g(x)h(x) dx (2.3)

on C[a, b] where w(x) > 0 for x 2 (a, b). Given f 2 C[a, b] we want to find p 2 P
n

[x] so as to minimise
hf � p, f � pi = kf � pk2. Call the optimal polynomial p̂

n

. The following theorem shows that p̂

n

can be
easily expressed in terms of the orthogonal polynomials associated to (2.3).

Theorem Let p0, p1, p2, . . . be orthogonal polynomials associated to the inner product (2.3). Let f 2 C[a, b].
Then the polynomial p̂

n

2 P
n

[x] that minimises kf � pk2 = hf � p, f � pi is given by

p̂

n

(x) =
nX

k=0

hf, p
k

i
hp

k

, p

k

ipk(x). (2.4)

Proof. Because p0, . . . , pn form a basis of P
n

[x], any p 2 P
n

can be written as p =
P

n

k=0 ckpk for some
coe�cients c

k

. Thus we have, using orthogonality of the p

k

s

hf � p, f � pi =
*
f �

nX

k=0

c

k

p

k

, f �
nX

k=0

c

k

p

k

+
= hf, fi � 2

nX

k=0

c

k

hp
k

, fi+
nX

k=0

c

2
k

hp
k

, p

k

i.

To minimise this expression we find values of the c

k

s that make the gradient equal to 0. We have:

@

@c

k

hf � p, f � pi = �2hp
k

, fi+ 2c
k

hp
k

, p

k

i, k = 0, 1, . . . , n,

hence setting these to zero we get c
k

= hf,pki
hpk,pki which gives the expression (2.4). 2

The approximation error we get with p̂

n

is

hf � p̂

n

, f � p̂

n

i = hf, fi �
nX

k=0

{2c
k

hp
k

, fi � c

2
k

hp
k

, p

k

i} = hf, fi �
nX

k=0

hp
k

, fi2

hp
k

, p

k

i . (2.5)

This identity can be rewritten as hf�p̂

n

, f�p̂

n

i+hp̂
n

, p̂

n

i = hf, fi, reminiscent of the Pythagoras theorem. It
is clear that increasing n brings the approximation error down. A natural question is: if we keep increasing n

does the approximation error eventually reach 0? The answer is yes and this is a consequence of Weierstrass’s
theorem (which we are going to admit without proof):

Theorem (Weierstrass theorem) Let [a, b] be finite and let f 2 C[a, b]. For any ✏ > 0 there is a polynomial
p of high enough degree such that |f(x)� p(x)|  ✏ for all x 2 [a, b].

To prove that kf � p̂

n

k2 ! 0 as n ! 1, note that by our definition of inner product (2.3) we have, for any p

kf � pk2 =

Z
b

a

w(x)(f(x)� p(x))2dx 
✓

max
x2[a,b]

|f(x)� p(x)|
◆2 Z

b

a

w(x)dx.

For any � > 0 we know by Weierstrass theorem that there is a polynomial p of degree n (with n large enough)

such that max
x2[a,b] |f(x)� p(x)| 

q
�/

R
b

a

w(x)dx. So for any N � n we have

kf � p̂

N

k2  kf � pk2 
 s

�

R
b

a

w(x)dx

!2 Z
b

a

w(x)dx  �.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

This is true for any � > 0 and so shows that kf � p̂

n

k2 ! 0 as n ! 1. Using the identity (2.5) we get the
following consequence:

Theorem (The Parseval identity) Let [a, b] be finite, and let p0, p1, p2, . . . be orthogonal polynomials for
(2.3). Then for any f 2 C[a, b],

1X

k=0

hp
k

, fi2

hp
k

, p

k

i = hf, fi. (2.6)

2.5 Least-squares fitting to discrete function values

Consider now the following problem: we are given m function values f(x1), f(x2), . . . , f(xm

), where the
x

k

s are pairwise distinct, and seek p 2 P
n

[x] that minimises
P

n

k=0(f(xk

) � p(x
k

))2. This corresponds to
minimising hf � p, f � pi with the following inner product:

hg, hi :=
mX

k=1

g(x
k

)h(x
k

). (2.7)

The result from the previous subsection extends directly to this situation as long as n  m�1 (note that (2.7)
does not define a valid inner product on polynomials of degree greater than or equal m). So for n  m� 1
we can solve the problem as follows:

1. Employ the three-term recurrence (2.3) to calculate p0, p1, . . . , pn (of course, using the scalar product
(2.7));

2. Form p(x) =
nX

k=0

hp
k

, fi
hp

k

, p

k

ipk(x).

2.6 Gaussian quadrature

We are again in C[a, b] and a scalar product is defined as in subsection 2.1, namely hf, gi =
R
b

a

w(x)f(x)g(x) dx,
where w(x) > 0 for x 2 (a, b). Our goal is to approximate integrals by finite sums,

Z
b

a

w(x)f(x) dx ⇡
⌫X

k=1

b

k

f(c
k

), f 2 C[a, b].

The above is known as a quadrature formula. Here ⌫ is given, whereas the points b1, . . . , b⌫ (the weights)
and c1, . . . , c⌫ (the nodes) are independent of the choice of f .
A reasonable approach to achieving high accuracy is to require that the approximation is exact for all
f 2 P

m

[x], where m is as large as possible – this results in Gaussian quadrature and we will demonstrate
that m = 2⌫ � 1 can be attained.
Firstly, we claim that m = 2⌫ is impossible. To prove this, choose arbitrary nodes c1, . . . , c⌫ and note that

p(x) :=
Q

⌫

k=1(x � c

k

)2 lives in P2⌫ [x]. But
R
b

a

w(x)p(x) dx > 0, while
P

⌫

k=1 bkp(ck) = 0 for any choice of
weights b1, . . . , b⌫ . Hence the integral and the quadrature do not match.
Let p0, p1, p2, . . . denote, as before, the monic polynomials which are orthogonal w.r.t. the underlying scalar
product.

Theorem Given n � 1, p
n

has n real distinct zeros in the interval (a, b).
Proof. Let ⇠1, . . . , ⇠m be the points in (a, b) where p

n

changes signs (equivalently these are the zeros of p
of odd multiplicity) and let q(x) =

Q
m

i=1(x � ⇠

i

). Observe that the polynomial p
n

(x)q(x) does not change
signs in (a, b): this is because all the roots of p

n

(x)q(x) in (a, b) have even multiplicity. It thus follows that

|hq, p
n

i| =

�����

Z
b

a

w(x)q(x)p
n

(x) dx

����� =
Z

b

a

w(x)|q(x)p
n

(x)| dx > 0.

Since p

n

is orthogonal to all polynomials of degree  n � 1 it follows that q must be of degree at least n,
i.e., m  n. On the other hand, since p

n

is of degree n it can have at most n roots. Finally this means that
p

n

has n distinct real roots in (a, b). 2

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 5

1

We commence our construction of Gaussian quadrature by choosing pairwise-distinct nodes
c1, c2, . . . , c⌫ 2 [a, b] and define the interpolatory weights

b

k

:=

Z
b

a

w(x)
⌫Y

j=1
j 6=k

x� c

j

c

k

� c

j

dx, k = 1, 2, . . . , ⌫.

Theorem The quadrature formula with the above choice is exact for all f 2 P
⌫�1[x]. Moreover, if

c1, c2, . . . , c⌫ are the zeros of p
⌫

then it is exact for all f 2 P2⌫�1[x].
Proof. Every f 2 P

⌫�1[x] is its own interpolating polynomial, hence by Lagrange’s formula

f(x) =
⌫X

k=1

f(c
k

)
⌫Y

j=1
j 6=k

x� c

j

c

k

� c

j

. (2.7)

The quadrature is exact for all f 2 P
⌫�1[x] if

R
b

a

w(x)f(x) dx =
P

⌫

k=1 bkf(ck), and this, in tandem with the
interpolating-polynomial representation, yields the stipulated form of b1, . . . , b⌫ .
Let c1, . . . , c⌫ be the zeros of p

⌫

. Given any f 2 P2⌫�1[x], we can represent it uniquely as f = qp

⌫

+ r, where
q, r 2 P

⌫�1[x]. Thus, by orthogonality,

Z
b

a

w(x)f(x) dx =

Z
b

a

w(x)[q(x)p
⌫

(x) + r(x)] dx = hq, p
⌫

i+
Z

b

a

w(x)r(x) dx

=

Z
b

a

w(x)r(x) dx.

On the other hand, the choice of quadrature knots gives

⌫X

k=1

b

k

f(c
k

) =
⌫X

k=1

b

k

[q(c
k

)p
⌫

(c
k

) + r(c
k

)] =
⌫X

k=1

b

k

r(c
k

).

Hence the integral and its approximation coincide, because r 2 P
⌫�1[x] and the quadrature is exact for all

polynomials in P
⌫�1[x]. 2

Example Let [a, b] = [�1, 1], w(x) ⌘ 1. Then the underlying orthogonal polynomials are the Legendre

polynomials: P0 ⌘ 1, P1(x) = x, P2(x) = 3
2x

2 � 1
2 , P3(x) = 5

2x
3 � 3

2x, P4(x) = 35
8 x

4 � 15
4 x

2 + 3
8 (it is

customary to use this, non-monic, normalisation). The nodes of Gaussian quadrature are
⌫ = 1: c1 = 0;

⌫ = 2: c1 = �
p
3
3 , c2 =

p
3
3 ;

⌫ = 3: c1 = �
p
15
5 , c2 = 0, c3 =

p
15
5 ;

⌫ = 4: c1 = �
q

3
7 + 2

35

p
30, c2 = �

q
3
7 � 2

35

p
30, c3 =

q
3
7 � 2

35

p
30, c4 =

q
3
7 + 2

35

p
30.

3 The Peano kernel theorem

In the previous section we looked at quadrature formulae that are exact for polynomials up to certain degree
n. The aim of this section is to present a tool that allows us to bound the error if we use the quadrature
formula for functions f that are not in P

n

[x]. The result we will state is actually quite general, and is not

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

restricted to quadrature formulae, however we will use quadrature formulae as a running example for the
sake of motivation. The error function for a quadrature formula is

L(f) =

Z
b

a

w(x)f(x)dx�
⌫X

k=1

b

k

f(c
k

).

Assume that f 2 Cn+1[a, b] and consider Taylor’s formula with integral remainder:

f(x) = f(a) + (x� a)f 0(a) +
(x� a)2

2!
f

00(a) + · · ·+ (x� a)n

n!
f

(n)(a)
| {z }

g(x)

+
1

n!

Z
x

a

(x� ✓)nf (n+1)(✓) d✓. (3.1)

Since g is a polynomial of degree n, and since our quadrature formula is exact for polynomials up to degree
n we have L(g) = 0. It thus follows, since L is linear that

L(f) = L

⇢
x 7! 1

n!

Z
x

a

(x� ✓)nf (n+1)(✓) d✓

�
.

To make the range of integration independent of x, we introduce the notation

(x� ✓)n+ :=

⇢
(x� ✓)n, x � ✓,

0, x  ✓,

whence L(f) =
1

n!
L

(
x 7!

Z
b

a

(x� ✓)n+f
(n+1)(✓) d✓

)
.

Let K(✓) := L[x 7! (x � ✓)n+] for x 2 [a, b]. [Note: K is independent of f .] The function K is called the
Peano kernel of L. Suppose that it is allowed to exchange the order of action of

R
and L. Because

of the linearity of L, we then have

L(f) =
1

n!

Z
b

a

K(✓)f (n+1)(✓) d✓. (3.2)

The Peano kernel theorem Let L be a linear functional such that L(f) = 0 for all f 2 P
n

[x]. Provided
that f 2 Cn+1[a, b] and the above exchange of L with the integration sign is valid, the formula (3.2) is true.

2

Example Consider Simpson’s rule
R 1
�1 f(x) dx ⇡ 1

3 (f(�1)+4f(0)+f(1)). One can verify that the Simpson
rule is exact for polynomials up to degree 2 (in fact it is also true for polynomials up to degree 3). Let

L(f) =
R 1
�1 f(x)dx� 1

3 (f(�1) + 4f(0) + f(1)). Peano kernel theorem tells us that for any f 2 C3[�1, 1] we
have

L(f) =
1

2

Z 1

�1
K(✓)f 000(✓) d✓,

where K(✓) = L(x 7! (x� ✓)2+). Since
R 1
�1(x� ✓)2+ dx = (1�✓)3

3 we can verify that

K(✓) =

(
(1�✓)3

3 � 1
3 (0 + 4✓2 + (1� ✓)2) �1  ✓  0

(1�✓)3

3 � 1
3 (0 + 4 · 0 + (1� ✓)2) 0  ✓  1

=

⇢
� 1

3✓(1 + ✓)2 �1  ✓  0
� 1

3✓(1� ✓)2 0  ✓  1.

(3.3)

This allows us to bound the approximation error for Simpson’s rule. Indeed for any f 2 C3[�1, 1] we get

|L(f)|  1

2

Z 1

�1
|K(✓)||f 000(✓)| d✓  1

36
kf 000k1

where kf 000k1 := max
x2[�1,1] |f 000(✓)| and where we used the fact

R 1
�1 |K(✓)| d✓ = 1

18 which can be easily
verified from (3.3).

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 61

We look at another example of application of the Peano kernel theorem.

Example We approximate a derivative by a linear combination of function values, f 0(0) ⇡ � 3
2f(0)+2f(1)�

1
2f(2). Define L(f) := f

0(0)� [� 3
2f(0) + 2f(1)� 1

2f(2)] and it is easy to check that L(f) = 0 for f 2 P2[x].
(Verify by trying f(x) = 1, x, x2 and using linearity of L.) Thus, for f 2 C3[0, 2] we have

L(f) = 1
2

Z 2

0
K(✓)f 000(✓) d✓

with K(✓) = L(x 7! (x� ✓)2+). For fixed ✓, let g(x) := (x� ✓)2+. Then

K(✓) = L(g) = g

0(0)� ⇥� 3
2g(0) + 2g(1)� 1

2g(2)
⇤

= 2(0� ✓)+ � ⇥� 3
2 (0� ✓)2+ + 2(1� ✓)2+ � 1

2 (2� ✓)2+
⇤

=

8
<

:

2✓ � 3
2✓

2
, 0  ✓  1,

1
2 (2� ✓)2, 1  ✓  2,
0, else.

One can verify that
R 2
0 |K(✓)| d✓ = 2

3 . Consequently for any f 2 C3[0, 2] we have

|L(f)|  1

2!

Z 2

0
|K(✓)f 000(✓)| d✓  1

2
kf 000k1

Z 2

0
|K(✓)| d✓ =

1

3
kf 000k1,

where kf 000k1 = max
x2[0,2] |f 000(x)|.

4 Ordinary di↵erential equations

We wish to approximate the exact solution of the ordinary di↵erential equation (ODE)

y0 = f(t,y), t � 0, (4.1)

where y 2 RN and the function f : R ⇥ RN ! RN is su�ciently ‘nice’. (In principle, it is enough for f to
be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we henceforth assume that
f is analytic: in other words, we are always able to expand locally into Taylor series.) The equation (4.1) is
accompanied by the initial condition y(0) = y0.
Our purpose is to approximate y

n+1 ⇡ y(t
n+1), n = 0, 1, . . ., where t

m

= mh and the time step h > 0 is
small, from y0,y1, . . . ,yn

and equation (4.1).

4.1 One-step methods

A one-step method is a map y
n+1 = '

h

(t
n

,y
n

), i.e. an algorithm which allows y
n+1 to depend only on

t

n

, y
n

, h and the ODE (4.1).

The Euler method: We know y and its slope y0 at t = 0 and wish to approximate y at t = h > 0.
The most obvious approach is to truncate y(h) = y(0) + hy0(0) + 1

2h
2y00(0) + · · · at the h

2 term. Since
y0(0) = f(t0,y0), this procedure approximates y(h) ⇡ y0+hf(t0,y0) and we thus set y1 = y0+hf(t0,y0).
By the same token, we may advance from h to 2h by letting y2 = y1 + hf(t1,y1). In general, we obtain the
Euler method

y
n+1 = y

n

+ hf(t
n

,y
n

), n = 0, 1, (4.2)

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Convergence: Let t

⇤
> 0 be given. We say that a method, which for every h > 0 produces the solution

sequence y
n

= y
n

(h), n = 0, 1, . . . , bt⇤/hc, converges if

lim
h!0

max
n=0,...,bt⇤/hc

ky
n

(h)� y(nh)k = 0,

where y(nh) is the evaluation at time t = nh of the exact solution of (4.1).

Theorem Suppose that f satisfies the Lipschitz condition: there exists � � 0 such that

kf(t,v)� f(t,w)k  �kv �wk, t 2 [0, t⇤], v,w 2 RN

.

Then the Euler method (4.2) converges.

Proof. Let e
n

= y
n

� y(t
n

), the error at step n, where 0  n  t

⇤
/h. Thus,

e
n+1 = y

n+1 � y(t
n+1) = [y

n

+ hf(t
n

,y
n

)]� [y(t
n

) + hy0(t
n

) +O�
h

2
�
].

By the Taylor theorem, the O�
h

2
�
term can be bounded uniformly for all [0, t⇤] in the underlying norm k · k

by ch

2, where c > 0 (Indeed if we take c = 1
2 max

t2[0,t⇤] ky00(t)k, then by Taylor’s formula with integral
remainder we get that for any t, h such that 0  t < t+ h  t

⇤, ky(t+ h)� (y(t) + hy0(t))k  ch

2.) Thus,
using (4.1) and the triangle inequality,

ke
n+1k  ky

n

� y(t
n

)k+ hkf(t
n

,y
n

)� f(t
n

,y(t
n

))k+ ch

2

 ky
n

� y(t
n

)k+ h�ky
n

� y(t
n

)k+ ch

2 = (1 + h�)ke
n

k+ ch

2
.

Consequently, by induction,

ke
n+1k  (1 + h�)mke

n+1�m

k+ ch

2
m�1X

j=0

(1 + h�)j , m = 0, 1, . . . , n+ 1.

In particular, letting m = n+ 1 and bearing in mind that e0 = 0, we have

ke
n+1k  ch

2
nX

j=0

(1 + h�)j = ch

2 (1 + h�)n+1 � 1

(1 + h�)� 1
 ch

�

(1 + h�)n+1
.

For small h > 0 it is true that 0 < 1 + h�  eh�. This and (n + 1)h  t

⇤ imply that (1 + h�)n+1  et
⇤
�,

therefore ke
n

k  cet
⇤�

�

h

h!0�! 0 uniformly for 0  nh  t

⇤ and the theorem is true. 2

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 7

1

4.2 Multistep methods

It is often useful to use past solution values in computing a new value to the ODE (4.1). Assuming that
yn,yn+1, . . . ,yn+s�1 are available, where s � 1, we say that

sX

l=0

⇢lyn+l = h
sX

l=0

�lf(tn+l,yn+l), n = 0, 1, . . . , (4.4)

where ⇢s = 1, is an s-step method. If �s = 0, the method is explicit, otherwise it is implicit. If s � 2, we
need to obtain extra starting values y1, . . . ,ys�1 by di↵erent time-stepping method.

Examples: The following are some common multistep methods:

Euler: yn+1 � yn = hf(tn,yn),

Implicit Euler: yn+1 � yn = hf(tn+1,yn+1),

Trapezoidal rule: yn+1 � yn = 1
2h[f(tn,yn) + f(tn+1,yn+1)]

Theta rule: yn+1 � yn = h[✓f(tn,yn) + (1� ✓)f(tn+1,yn+1)]

2-step Adams-Bashforth: yn+2 � yn+1 = h[32f(tn+1,yn+1)� 1
2f(tn,yn)]

2-step Adams-Moulton: yn+2 � yn+1 = h[5
12f(tn+2,yn+2) +

2
3f(tn+1,yn+1)� 1

12f(tn,yn)].

For example Adams-Bashforth is a 2-step method (s = 2) with ⇢2 = 1, ⇢1 = �1, ⇢0 = 0 and �2 = 0,�1 = 3
2

and �0 = � 1
2 . The implicit Euler method, trapezoidal rule, theta rule for 0  ✓ < 1, and Adams-Moulton

are implicit methods. The reason these are called implicit is that yn+s appears in the right-hand side of
(4.4) and so one has to solve a (generally nonlinear) algebraic equation to compute the new value yn+s from
the recursion rule.

Our goal is to develop some general tools to study the convergence of multistep methods. We first introduce
the definition or order.

Order: The order of the multistep method (4.4) is the largest integer p � 0 such that

sX

l=0

⇢ly(tn+l)� h
sX

l=0

�ly
0(tn+l) = O�hp+1

�
(4.5)

for all su�ciently smooth functions y. The order is a local measure of accuracy for the method: it measures
the error incurred by applying the rule (4.4), assuming that the correct value of y at the previous points is
known. Let us evaluate the order of some of the methods given above:

The order of Euler’s method: For Euler’s method, the left-hand side of (4.5) is

y(tn+1)� [y(tn) + hy0(tn,y(tn))] = [y(tn) + hy0(tn) +
1
2h

2y00(tn) + · · ·]� [y(tn) + hy0(tn)] = O�h2
�

and we deduce that Euler’s method is of order 1.

The order of the theta method: From Taylor’s theorem we have:

y(tn+1)� y(tn)� h[✓y0(tn) + (1� ✓)y0(tn+1)]

= [y(tn) + hy0(tn) +
1
2h

2y00(tn) +
1
6h

3y000(tn)]� y(tn)� ✓hy0(tn)

� (1� ✓)h[y0(tn) + hy00(tn) +
1
2h

2y000(tn)] +O�h4
�

= (✓ � 1
2)h

2y00(tn) + (12✓ � 1
3)h

3y000(tn) +O�h4
�
.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Therefore the theta method is of order 1, except that the trapezoidal rule (✓ = 1/2) is of order 2.

Let ⇢(w) =
Ps

l=0 ⇢lw
l, �(w) =

Ps
l=0 �lwl.

Theorem The multistep method (4.4) is of order p � 1 i↵

⇢(ez)� z�(ez) = O�zp+1
�
, z ! 0. (4.6)

Proof. Substituting the exact solution and expanding into Taylor series about tn,

sX

l=0

⇢ly(tn+l)� h
sX

l=0

�ly
0(tn+l) =

sX

l=0

⇢l

1X

k=0

1

k!
y(k)(tn)l

khk � h
sX

l=0

�l

1X

k=0

1

k!
y(k+1)(tn)l

khk

=

sX

l=0

⇢l

!
y(tn) +

1X

k=1

1

k!

sX

l=0

lk⇢l � k
sX

l=0

lk�1�l

!
hky(k)(tn).

Thus, to obtain O�hp+1
�
regardless of the choice of y, it is necessary and su�cient that

sX

l=0

⇢l = 0,
sX

l=0

lk⇢l = k
sX

l=0

lk�1�l, k = 1, 2, . . . , p. (4.7)

On the other hand, expanding again into Taylor series,

⇢(ez)� z�(ez) =
sX

l=0

⇢le
lz � z

sX

l=0

�le
lz =

sX

l=0

⇢l

 1X

k=0

1

k!
lkzk

!
� z

sX

l=0

�l

 1X

k=0

1

k!
lkzk

!

=
1X

k=0

1

k!

sX

l=0

lk⇢l

!
zk �

1X

k=1

1

(k � 1)!

sX

l=0

lk�1�l

!
zk

=

sX

l=0

⇢l

!
+

1X

k=1

1

k!

sX

l=0

lk⇢l � k
sX

l=0

lk�1�l

!
zk.

The theorem follows from (4.7). 2

Example For the 2-step Adams–Bashforth method we have ⇢(w) = w2 � w, �(w) = 3
2w � 1

2 and so

⇢(ez)� z�(ez) = [1 + 2z+2z2 + 4
3z

3]� [1 + z+ 1
2z

2 + 1
6z

3]� 3
2z[1 + z+ 1

2z
2] + 1

2z+O�z4� = 5
12z

3 +O�z4� .

Hence the method is of order 2.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 8

1

Definition We say that a polynomial obeys the root condition if all its zeros reside in |w|  1 and all zeros
of unit modulus are simple.

Theorem (The Dahlquist equivalence theorem) The multistep method (4.5) is convergent i↵ it is of

order p � 1 and the polynomial ⇢ obeys the root condition.

2

Example For the Adams–Bashforth method (see last lecture) we have ⇢(w) = (w � 1)w and the root
condition is obeyed. Also we saw that the Adams–Bashforth has order 2. By the Dahlquist equivalence
theorem it is convergent.

Example (Absence of convergence) Consider the 2-step method

yn+2 � 2yn+1 + yn = 0. (4.10)

Here ⇢(w) = w2 � 2w + 1 = (w � 1)2 and �(w) = 0. We have ⇢(ez) � z�(ez) = (ez � 1)2 = (z + O(z2))2 =
z2 +O(z3) and so the method has order 1. However ⇢ does not obey the root condition since the zero w = 1
has multiplicity 2. In fact the method (4.10) is obviously not convergent since it does not use the function
f which defines the ODE!

A technique A useful procedure to generate multistep methods which are convergent and of high order is
as follows. According to (4.6), order p � 1 implies ⇢(1) = 0. Choose an arbitrary s-degree polynomial ⇢ that
obeys the root condition and such that ⇢(1) = 0. To maximize order, we let � be the s-degree (alternatively,
(s� 1)-degree for explicit methods) polynomial arising from the truncation of the Taylor expansion of

⇢(w)

logw

about the point w = 1. Thus, for example, for an implicit method,

�(w) =
⇢(w)

logw
+O�|w � 1|s+1

�) ⇢(ez)� z�(ez) = O�zs+2
�

and (4.6) implies order at least s+ 1.

Example The choice ⇢(w) = ws�1(w � 1) corresponds to Adams methods: Adams–Bashforth methods if
�s = 0, whence the order is s, otherwise order-(s+1) (but implicit) Adams–Moulton methods. For example,
letting s = 2 and ⇠ = w � 1, we obtain the 3rd-order Adams–Moulton method by expanding

w(w � 1)

logw
=

⇠ + ⇠2

log(1 + ⇠)
=

⇠ + ⇠2

⇠ � 1
2⇠

2 + 1
3⇠

3 � · · · =
1 + ⇠

1� 1
2⇠ +

1
3⇠

2 � · · ·
= (1 + ⇠)[1 + (12⇠ � 1

3⇠
2) + (12⇠ � 1

3⇠
2)2 +O�⇠3�] = 1 + 3

2⇠ +
5
12⇠

2 +O�⇠3�

= 1 + 3
2 (w � 1) + 5

12 (w � 1)2 +O�|w � 1|3� = � 1
12 + 2

3w + 5
12w

2 +O�|w � 1|3� .
Therefore the 2-step, 3rd-order Adams–Moulton method is

yn+2 � yn+1 = h[� 1
12f(tn,yn) +

2
3f(tn+1,yn+1) +

5
12f(tn+2,yn+2)].

BDF methods For reasons that will be made clear in the sequel, we wish to consider s-step, s-order methods
s.t. �(w) = �sw

s for some �s 2 R \ {0}. In other words,

sX

l=0

⇢lyn+l = h�sf(tn+s,yn+s), n = 0, 1,

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

2
If ⇢ obeys the root condition, the method (4.5) is sometimes said to be zero-stable: we will not use this terminology.

1

Such methods are called backward di↵erentiation formulae (BDF).

Theorem The explicit form of the s-step BDF method is

⇢(w) = �s

sX

l=1

1

l
ws�l(w � 1)l, where �s =

sX

l=1

1

l

!�1

. (4.11)

Proof We are looking for ⇢ such that the order condition ⇢(w) = �sw
s logw + O�|w � 1|s+1

�
for w ! 1

holds. Note that

log(w) = � log

✓
1

w

◆
= � log

✓
1� w � 1

w

◆
=

1X

l=1

(w � 1)l

l · wl
.

With the choice of ⇢(w) given in (4.11) we get

⇢(w)� �sw
s log(w) = ��s

1X

l=s+1

1

l
(w � 1)lws�l = O�|w � 1|s+1

�
(w ! 1)

and so the order condition is satisfied. The value of �s in (4.11) is such that ⇢s = 1. 2

Example Let s = 2. Substitution in (4.11) yields �2 = 2
3 and simple algebra results in ⇢(w) = w2� 4

3w+ 1
3 .

Hence the 2-step BDF is
yn+2 � 4

3yn+1 +
1
3yn = 2

3hf(tn+2,yn+2).

Remark We cannot take it for granted that BDF methods are convergent. It is possible to prove that they
are convergent i↵ s  6. They must not be used outside this range!

4.3 Runge–Kutta methods

Recalling quadrature We may approximate

Z h

0
f(t)dt ⇡ h

⌫X

l=1

blf(clh),

where the weights bl are chosen in accordance with an explicit formula from Lecture 5 (with weight function
w ⌘ 1). This quadrature formula is exact for all polynomials of degree ⌫�1 and, provided that

Q⌫
k=1(x�ck)

is orthogonal w.r.t. the weight function w(x) ⌘ 1, 0  x  1, the formula is exact for all polynomials of
degree 2⌫ � 1.

Suppose that we wish to solve the ‘ODE’ y0 = f(t), y(0) = y0. The exact solution is y(tn+1) = y(tn) +R tn+1

tn
f(t)dt and we can approximate it by quadrature. In general, we obtain the time-stepping scheme

yn+1 = yn + h

⌫X

l=1

blf(tn + clh) n = 0, 1,

Here h = tn+1 � tn (the points tn need not be equispaced). Can we generalize this to genuine ODEs of the
form y0 = f(t,y)?

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 9

1

Formally, y(tn+1) = y(tn) +

Z tn+1

tn

f(t,y(t))dt, and this can be ‘approximated’ by

yn+1 = yn + h
⌫X

l=1

blf(tn + clh,y(tn + clh)). (4.11)

except that, of course, the vectors y(tn + clh) are unknown! Runge–Kutta methods are a means of imple-
menting (4.11) by replacing unknown values of y by suitable linear combinations. The general form of a
⌫-stage explicit Runge–Kutta method (RK) is

k1 = f(tn,yn),

k2 = f(tn + c2h,yn + hc2k1),

k3 = f(tn + c3h,yn + h(a3,1k1 + a3,2k2)), a3,1 + a3,2 = c3,

...

k⌫ = f

0

@tn + c⌫h,yn + h
⌫�1X

j=1

a⌫,jkj

1

A ,
⌫�1X

j=1

a⌫,j = c⌫ ,

yn+1 = yn + h
⌫X

l=1

blkl.

The choice of the RK coe�cients al,j is motivated at the first instance by order considerations.

Example Set ⌫ = 2. We have k1 = f(tn,yn) and, Taylor-expanding about (tn,yn),

k2 = f(tn + c2h,yn + c2hf(tn,yn))

= f(tn,yn) + hc2


@f(tn,yn)

@t
+

@f(tn,yn)

@y
f(tn,yn)

�
+O�

h2
�
.

But

y0 = f(t,y)) y00 =
@f(t,y)

@t
+

@f(t,y)

@y
f(t,y).

Therefore, substituting the exact solution yn = y(tn), we obtain k1 = y0(tn) and k2 = y0(tn) + hc2y00(tn) +
O�

h2
�
. Consequently, the local error is

y(tn+1)� (y(tn) + hb1k1 + hb2k2) = [y(tn) + hy0(tn) +
1
2h

2y00(tn) +O�
h3

�
]

� [y(tn) + h(b1 + b2)y
0(tn) + h2b2c2y

00(tn) +O�
h3

�
].

We deduce that the RK method is of order 2 if b1 + b2 = 1 and b2c2 = 1
2 . We can demonstrate that no

such method may be of order � 3. To show this consider the ODE y0 = y with y(0) = 1 whose solution is
y(t) = et. For this ODE we can write the local error explicitly: indeed we have k1 = f(tn, y(tn)) = etn and
k2 = f(tn + c2h, y(tn) + c2hk1) = y(tn) + c2hk1 = etn(1 + c2h). Then the local error is

y(tn+1)� (y(tn) + hb1k1 + hb2k2) = etn+1 � etn � etn(hb1 + hb2 + h2b2c2)

= etn(eh � 1� h(b1 + b2)� h2(b2c2))

= etn
✓
h(1� b1 � b2) + h2(1/2� b2c2) +

h3

6
+O�

h4
�◆

.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

We see that there is no choice of b1, b2, c2, c2 that will make the term h3 vanish, and so the method cannot
have order � 3.

General RK methods A general ⌫-stage Runge–Kutta method is

kl = f

0

@tn + clh,yn + h
⌫X

j=1

al,jkj

1

A where
⌫X

j=1

al,j = cl, l = 1, 2, . . . , ⌫,

yn+1 = yn + h
⌫X

l=1

blkl.

Obviously, al,j = 0 for all l  j yields the standard explicit RK. Otherwise, an RK method is said to be
implicit.

4.4 Sti↵ equations

Consider the linear scalar system (
y0 = �y

y(0) = 1

where � < 0. The solution is y(t) = e�t which decays to 0 as t ! 1. If we solve our ODE using a numerical
method, we would like our sequence (yn) to also decay to zero. For example with Euler’s method we get
yn+1 = yn + h�yn = (1 + h�)yn whose solution is yn = (1 + h�)n. Thus the sequence yn converges to 0 as
n ! 1 provided that |1 + h�| < 1, i.e., h < 2/|�|. For large � this can be a severe restriction on h: for
example for � = �1000 this implies h < 2/1000 = 0.002.

Consider now the implicit Euler method. Here we have yn+1 = yn+h�yn+1 which gives yn+1 = (1�h�)�1yn
and so yn = (1� h�)�n which converges to 0 for any choice of h > 0 (we assumed � < 0)!

Definition Suppose that a numerical method, applied to y0 = �y, y(0) = 1, with constant h, produces the
solution sequence {yn}n2Z+ . We call the set

D = {h� 2 C : lim
n!1

yn = 0}

the linear stability domain of the method. Noting that the set of � 2 C for which y(t)
t!1�! 0 is the left

half-plane C� = {z 2 C : Re z < 0}, we say that the method is A-stable if C� ✓ D.

Example We have already seen that for the explicit Euler’s method yn ! 0 i↵ |1 + h�| < 1, therefore
D = {z 2 C : |1 + z| < 1} and the explicit Euler method is not A-stable. Moreover, solving y0 = �y with
the implicit Euler method we have seen that yn ! 0 i↵ |1� h�|�1 < 1, therefore the linear stability domain
is D = {z 2 C : |1� z| > 1}, hence the implicit Euler method is A-stable.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 10

1

Example We have already seen that the linear stability domain of the explicit Euler’s method is D = {z 2
C : |1+ z| < 1} (not A-stable), and for the implicit Euler’s method it is D = {z 2 C : |1� z| > 1} (A-stable).
Consider now the trapezoidal rule: yn+1 = yn + 1

2h[f(tn,yn) + f(tn+1,yn+1)]. Applied to y0 = �y we get
yn+1 = [(1 + 1

2h�)/(1� 1
2h�)]yn thus, by induction, yn = [(1 + 1

2h�)/(1� 1
2h�)]

ny0. Therefore

z 2 D ,
����
1 + 1

2z

1� 1
2z

���� < 1 , Re z < 0

and we deduce that D = C�. Hence, the method is A-stable.

Discussion A-stability analysis of multistep methods is considerably more complicated. However, according
to the second Dahlquist barrier, no multistep method of order p � 3 may be A-stable. Note that the p = 2
barrier for A-stability is attained by the trapezoidal rule.

The Dahlquist barrier implies that, in our quest for higher-order methods with good stability properties, we
need to pursue one of the following strategies:

• either relax the definition of A-stability

• or consider other methods in place of multistep.

The two courses of action will be considered next.

Sti↵ness and BDF methods Inasmuch as no multistep method of order p � 3 may be A-stable, stability
properties of BDF, say, are satisfactory for most sti↵ equations. The point is that in many sti↵ linear
systems in applications the eigenvalues are not just in C� but also well away from iR. [Analysis of nonlinear
sti↵ equations is di�cult and well outside the scope of this course.] All BDF methods of order p  6 (i.e.,
all convergent BDF methods) share the feature that the linear stability domain D includes a wedge about
(�1, 0): such methods are said to be A0-stable.

Sti↵ness and Runge–Kutta Unlike multistep methods, implicit high-order RK may be A-stable. For
example, consider the following 2-stage implicit RK method:

k1 = f
�
tn,yn + 1

4h(k1 � k2)
�
,

k2 = f
�
tn + 2

3h,yn + 1
12h(3k1 + 5k2)

�
,

yn+1 = yn + 1
4h(k1 + 3k2).

One can show that this method is A-stable and has order 3. We first show that it is A-stable. Applying the
method to y0 = �y, we have

hk1 = h�
�
yn + 1

4hk1 � 1
4hk2

�
,

hk2 = h�
�
yn + 1

4hk1 +
5
12hk2

�
.

This is a linear system, whose solution is


hk1
hk2

�
=


1� 1

4h�
1
4h�� 1

4h� 1� 5
12h�

��1 
h�yn
h�yn

�
=

h�yn
1� 2

3h�+ 1
6 (h�)

2


1� 2

3h�
1

�
,

therefore

yn+1 = yn + 1
4hk1 +

3
4hk2 =

1 + 1
3h�

1� 2
3h�+ 1

6h
2�2

yn.

Let

r(z) =
1 + 1

3z

1� 2
3z +

1
6z

2
.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Then yn+1 = r(h�)yn, therefore, by induction, yn = [r(h�)]ny0 and we deduce that

D = {z 2 C : |r(z)| < 1}

We wish to prove that |r(z)| < 1 for every z 2 C�, since this is equivalent to A-stability. This will be done
by a technique that can be applied to other RK methods. According to the maximum modulus principle

from Complex Methods, if g is a nonconstant analytic function defined on an open set ⌦ ⇢ C, then |g| has
no maximum in ⌦. We let g = r. This is a rational function, hence its only singularities are the poles 2± i

p
2

and g is analytic in ⌦ = C� = {z 2 C : Re z < 0}. Thus to prove that the method is A-stable, it su�ces to
check that lim|z|!1,Re [z]<0 |r(z)|  1 and that |r(it)|  1 for all t 2 R. The first condition is easy to check
from the definition of r. For the second condition, we verify that

|r(it)|2  1 , |1� 2
3 it� 1

6 t
2|2 � |1 + 1

3 it|2 � 0.

But |1� 2
3 it� 1

6 t
2|2 � |1 + 1

3 it|2 = 1
36 t

4 � 0 and it follows that the method is A-stable.

Let us now show that the method has order 3. To do this we restrict our attention to scalar, autonomous
equations of the form y0 = f(y). For brevity, we use the convention that all functions are evaluated at
y = y(tn), e.g. fy = df(y(tn))/dy. Thus,

k1 = f + 1
4hfy(k1 � k2) +

1
32h

2fyy(k1 � k2)
2 +O�

h3
�
,

k2 = f + 1
12hfy(3k1 + 5k2) +

1
288h

2fyy(3k1 + 5k2)
2 +O�

h3
�
.

We have k1, k2 = f +O(h) and substitution in the above equations yields k1 = f +O�
h2

�
, k2 = f + 2

3hfyf +
O�

h2
�
. Substituting again, we obtain

k1 = f � 1
6h

2f2
y f +O�

h3
�
,

k2 = f + 2
3hfyf + h2

�
5
18f

2
y f + 2

9fyyf
2
�
+O�

h3
�

) yn+1 = y + hf + 1
2h

2fyf + 1
6h

3(f2
y f + fyyf

2) +O�
h4

�
.

But y0 = f) y00 = fyf) y000 = f2
y f + fyyf2 and we deduce from Taylor’s theorem that the method is at

least of order 3. (It is easy to verify that it isn’t of order 4, for example applying it to the equation y0 = �y.)

Example It is possible to prove that the 2-stage Gauss–Legendre method

k1 = f(tn + (12 �
p
3
6)h,yn + 1

4hk1 + (14 �
p
3
6)hk2),

k2 = f(tn + (12 +
p
3
6)h,yn + (14 +

p
3
6)hk1 +

1
4hk2),

yn+1 = yn + 1
2h(k1 + k2)

is of order 4. [You can do this for y0 = f(y) by expansion, but it becomes messy for y0 = f(t,y).] It can
be easily verified that for y0 = �y we have yn = [r(h�)]ny0, where r(z) = (1 + 1

2z +
1
12z

2)/(1� 1
2z +

1
12z

2).

Since the poles of r reside at 3 ± i
p
3 and |r(it)| ⌘ 1, we can again use the maximum modulus principle to

argue that D = C� and the Gauss–Legendre method is A-stable.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 111

4.6 Implementation of ODE methods

The step size h is not some preordained quantity: it is a parameter of the method (in reality, many parameters,
since we may vary it from step to step). The basic input of a well-written computer package for ODEs is not
the step size but the error tolerance: the level of precision, as required by the user. The choice of h > 0 is an
important tool at our disposal to keep a local estimate of the error beneath the required tolerance in the solution
interval. In other words, we need not just a time-stepping algorithm, but also mechanisms for error control and
for amending the step size.

The Milne device Suppose that we wish to monitor the error of the trapezoidal rule

yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn+1)]. (4.12)

We already know that the order is 2. Moreover, substituting the true solution we deduce that

y(tn+1)� {y(tn) + 1
2h[y

0(tn) + y0(tn+1)]} = � 1
12h

3y000(tn) +O�
h4

�
.

Therefore, the error in each step is increased roughly by � 1
12h

3y000(tn). The number cTR = � 1
12 is called the

error constant of TR. Similarly, each multistep method (but not RK!) has its own error constant. For example,
the 2nd order 2-step Adams–Bashforth method

yn+1 � yn = 1
2h[3f(tn,yn)� f(tn�1,yn�1)], (4.13)

has the error constant cAB = 5
12 .

The idea behind the Milne device is to use two multistep methods of the same order, one explicit and the second
implicit (e.g., (4.13) and (4.12), respectively), to estimate the local error of the implicit method. For example,
locally,

yAB
n+1 ⇡ y(tn+1)� cABh

3y000(tn) = y(tn+1)� 5
12h

3y000(tn),

yTR
n+1 ⇡ y(tn+1)� cTRh

3y000(tn) = y(tn+1) +
1
12h

3y000(tn).

Subtracting, we obtain the estimate h3y000(tn) ⇡ �2(yAB
n+1 � yTR

n+1), therefore

yTR
n+1 � y(tn+1) ⇡ 1

6 (y
TR
n+1 � yAB

n+1)

and we use the right hand side as an estimate of the local error.

Note that TR is a far better method than AB: it is A-stable, hence its global behaviour is superior. We employ
AB solely to estimate the local error. This adds very little to the overall cost of TR, since AB is an explicit
method.

Implementation of the Milne device We work with a pair of multistep methods of the same order, one
explicit (predictor) and the other implicit (corrector), e.g.

Predictor : yn+2 = yn+1 + h[5
12f(tn�1,yn�1)� 4

3f(tn,yn) +
23
12f(tn+1,yn+1)],

Corrector : yn+2 = yn+1 + h[� 1
12f(tn,yn) +

2
3f(tn+1,yn+1) +

5
12f(tn+2,yn+2)],

the third-order Adams–Bashforth and Adams–Moulton methods respectively.
The predictor is employed not just to estimate the error of the corrector, but also to provide an initial guess in
the solution of the implicit corrector equations. Typically, for nonsti↵ equations, we iterate correction equations
at most twice, while sti↵ equations require iteration to convergence, otherwise the typically superior stability
features of the corrector are lost.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Let TOL > 0 be a user-specified tolerance: the maximal error allowed in approximating the ODE. Having
completed a single step and estimated the error, there are three possibilities:

(a)

1
10TOL  k error k  TOL, say: Accept the step, continue to tn+2 with the same step size.

(b) k error k < 1
10TOL, say: Accept the step and increase the step length;

(c) k error k > TOL: Reject the step, recommence integration from tn with smaller h.

Amending step size can be done easily with polynomial interpolation, although this means that we need to store
past values well in excess of what is necessary for simple implementation of both multistep methods.

Error estimation per unit step Let e be our estimate of local error. Then e/h is our estimate for the
global error in an interval of unit length. It is usual to require the latter quantity not to exceed TOL since
good implementations of numerical ODEs should monitor the accumulation of global error. This is called error
estimation per unit step.

Embedded Runge–Kutta methods The situation is more complicated with RK, since no single error constant
determines local growth of the error. The approach of embedded RK requires, again, two (typically explicit)
methods: an RK method of ⌫ stages and order p, say, and another method, of ⌫ + l stages, l � 1, and order
p + 1, such that the first ⌫ stages of both methods are identical. (This means that the cost of implementing the
higher-order method is marginal, once we have computed the lower-order approximation.) For example, consider
(and verify!)

k1 = f(tn,yn),

k2 = f
�
tn + 1

2h,yn + 1
2hk1

�
,

y[1]
n+1 = yn + hk2 =) order 2,

k3 = f(tn + h,yn � hk1 + 2hk2),

y[2]
n+1 = yn + 1

6h(k1 + 4k2 + k3) =) order 3.

We thus estimate y[1]
n+1 � y(tn+1) ⇡ y[1]

n+1 � y[2]
n+1. [It might look paradoxical, at least at first glance, but the only

purpose of the higher-order method is to provide error control for the lower-order one!]

The Zadunaisky device Suppose that the ODE y0 = f(t,y), y(0) = y0, is solved by an arbitrary numerical
method of order p and that we have stored (not necessarily equidistant) past solution values yn,yn�1, . . . ,yn�p.
We form an interpolating pth degree polynomial (with vector coe�cients) d such that d(tn�i) = yn�i, i =
0, 1, . . . , p, and consider the di↵erential equation

z0 = f(t, z) + d0(t)� f(t,d), z(tn) = yn. (4.14)

There are two important observations with regard to (4.14)

(1) Since d(t) � y(t) = O�
hp+1

�
, the term d0(t) � f(t,d) is usually small (because y0(t) � f(t,y(t)) ⌘ 0).

Therefore, (4.14) is a small perturbation of the original ODE.

(2) The exact solution of (4.14) is known: z(t) = d(t).

Now, having produced yn+1 with our numerical method, we proceed to evaluate zn+1 as well, using exactly the
same method and implementation details. We then evaluate the error in zn+1, namely zn+1 � d(tn+1), and use
it as an estimate of the error in yn+1.

Solving nonlinear algebraic systems We have already observed that the implementation of an implicit ODE
method, whether multistep or RK, requires the solution of (in general, nonlinear) algebraic equations in each
step. For example, for an s-step method, we need to solve in each step the algebraic system

yn+s = �shf(tn+s,yn+s) + v, (4.15)

where the vector v can be formed from past (hence known) solution values and their derivatives. The easiest
approach is functional iteration

y[j+1]
n+s = �shf(tn+s,y

[j]
n+s) + v, j = 0, 1, . . . ,

where y[0]
n+s is typically provided by the predictor scheme. It is very e↵ective for nonsti↵ equations but fails for

sti↵ ODEs , since the convergence of this iterative scheme requires similar restriction on h as that we strive to
avoid by choosing an implicit method in the first place!

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 12

1

If the ODE is sti↵, we might prefer a Newton–Raphson method. Let (y) = y � �shf(tn+s,y) � v so
the equation we want to solve is (yn+s) = 0. The Newton-Raphson method corresponds to the following
iteration rule:

y

[j+1]
n+s = y

[j]
n+s �

✓
@

@y

(y[j]
n+s)

◆�1

 (y[j]
n+s). (4.16)

The justification of the above is as follows: suppose that y

[j]
n+s is an approximation to the solution. We

linearise locally around y

[j]
n+s to get

 (yn+s) ⇡ (y[j]
n+s) +

@

@y

(y[j]
n+s)(yn+s � y

[j]
n+s).

Setting the right-hand side to zero we get (4.16).

The snag is that repeatedly evaluating and inverting (i.e. LU-factorizing) the Jacobian matrix @
@y in every

iteration is very expensive. The remedy is to implement the modified Newton–Raphson method , namely

y

[j+1]
n+s = y

[j]
n+s �

✓
@

@y

(y[0]
n+s)

◆�1

 (y[j]
n+s). (4.17)

Thus, the Jacobian need be evaluated only once a step.

Important observation for future use: Implementation of (4.17) requires repeated solution of linear algebraic
systems with the same matrix. We will soon study LU factorization of matrices, and there this remark will
be appreciated as important and lead to substantial savings. For sti↵ equations it is much cheaper to solve
nonlinear algebraic equations with (4.17) than using a minute step size with a ‘bad’ (e.g., explicit multistep
or explicit RK) method.

5 Numerical linear algebra

5.1 LU factorization and its generalizations

Let A be a real n⇥ n matrix. We say that the n⇥ n matrices L and U are an LU factorization of A if (1)
L is unit lower triangular, i.e., Li,j = 0 for i < j and Lii = 1 for all i, (2) U is upper triangular, Ui,j = 0,
i > j; and (3) A = LU . Therefore the factorization takes the form2

4

3

5 =

2

4
@

@
@

3

5⇥
2

4@@
@

3

5
.

Application 1 Calculation of a determinant: detA = (detL)(detU) = (
Qn

k=1 Lk,k) · (
Qn

k=1 Uk,k). This is
much faster than the using the formula

detA =
X

�

sign(�)A1,�(1) . . . An,�(n) (5.1)

where the summation is over all permutations � of {1, . . . , n}. The number of terms in the sum is n!. On
a 109 flop/sec. computer (flop = floating point operation) evaluating (5.1) would take 4 ⇥ 105 years for a
matrix of size n = 30!

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Application 2 Testing for nonsingularity: A = LU is nonsingular i↵ all the diagonal elements of L and U

are nonzero.

Application 3 Solution of linear systems: Let A = LU and suppose we wish to solve Ax = b. This is the
same as L(Ux) = b, which we decompose into Ly = b, Ux = y. Both latter systems are triangular and can
be calculated easily. Thus, L1,1y1 = b1 gives y1, next L2,1y1 +L2,2y2 = b2 yields y2 etc. Having found y, we
solve for x in reverse order: Un,nxn = yn gives xn, Un�1,n�1xn�1+Un�1,nxn = yn�1 produces xn�1 and so on.
This requires O(n2) computational operations (usually we only bother to count multiplications/divisions).

Application 4 The inverse of A: It is straightforward to devise a direct way of calculating the inverse of
triangular matrices, subsequently forming A

�1 = U

�1
L

�1.

The calculation of LU factorization We denote the columns of L by l1, l2, . . . , ln and the rows of U by
u

>
1 ,u

>
2 , . . . ,u

>
n . Hence

A = LU = [l1 l2 · · · ln]

2

6664

u

>
1

u

>
2
...

u

>
n

3

7775
=

nX

k=1

lku
>
k . (5.2)

Since the first k�1 components of lk and uk are all zero, each rank-one matrix lku
>
k has zeros in its first k�1

rows and columns. We begin our calculation by extracting l1 and u

>
1 from A, and then proceed similarly to

extract l2 and u

>
2 , etc.

First we note that since the leading k� 1 elements of lk and uk are zero for k � 2, it follows from (5.2) that
u

>
1 is the first row of A and l1 is the first column of A, divided by A1,1 (so that L1,1 = 1).

Next, having found l1 and u1, we form the matrix A1 = A � l1u
>
1 =

Pn
k=2 lku

>
k . The first row & column

of A1 are zero and it follows that u>
2 is the second row of A1, while l2 is its second column, scaled so that

L2,2 = 1.

We can thus summarize the LU decomposition algorithm as follows: Set A0 := A. For all
k = 1, 2, . . . , n set u

>
k to the kth row of Ak�1 and lk to the kth column of Ak�1, scaled so that Lk,k = 1.

Set Ak := Ak�1 � lku
>
k and increment k.

At each step k, the dominant cost is to form lku
>
k . Since the first k � 1 components of lk and uk are

zero the cost of forming this rank-one matrix is (n � k + 1)2. Thus the total cost of the algorithm isPn
k=1(n� k + 1)2 =

Pn
j=1 j

2 = O�
n

3
�
.

Relation to Gaussian elimination In Gaussian elimination, we perform a series of elementary row op-
erations on A to transform it into an upper triangular matrix. Each elementary row operation consists in
adding a multiple of the k’th row to the j’th row (j > k). One can easily show that such operations can be
represented using unit lower triangular matrices. Thus Gaussian elimination can be written concisely as:

LnLn�1 . . . L1A = U

where each Lk is unit lower triangular and U is upper triangular. This gives A = LU where L = L

�1
1 . . . L

�1
n

is unit lower triangular. In the algorithm described above, the matrix Ak is the matrix obtained after k

steps of Gaussian elimination, except for the first k � 1 rows and columns which are zero in Ak. The only
di↵erence between Gaussian elimination and LU is that Gaussian elimination is usually applied to a linear
system Ax = b and the lower triangular matrices are not stored. One advantage of using LU decomposition
is that it can be reused for di↵erent right-hand sides: in Gaussian elimination the solution for each new b

would require O(n3) computational operations, whereas with LU factorization O(n3) operations are required
for the initial factorization, but then the solution for each new b only requires just O(n2) (forward/backward
substitution).

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 13

1

Pivoting Naive LU factorization fails when, for example, A1,1 = 0. The remedy is to exchange rows of A, a
technique called pivoting. Specifically, at the k’th step of the algorithm we look for another row p � k such that
the entry (Ak�1)p,k is nonzero. We permute rows p and k and proceed. The algorithm with pivoting can thus
be written as follows:

• Let A0 = A.

• For k = 1, . . . , n: find p � k such that (Ak�1)p,k 6= 0. Let Pk be the permutation matrix2 that swaps
positions k and p. Let u>

k be the k’th row of PkAk�1 and lk be 1
(PkAk�1)k,k

⇥ (k’th column of PkAk�1).

Set Ak = PkAk�1 � lku
T
k .

If we unroll the algorithm we have A1 = P1A0� l1u
T
1 , A2 = P2P1A�P2l1u

>
1 � l2u

T
2 , etc. and at the end, since

An = 0 (and Pn the identity matrix):

Pn�1 · · ·P1A = ˜

l1u
>
1 + · · ·+ ˜

lnu
>
n (5.2)

where ˜

lk = Pn�1 . . . Pk+1lk. Note that the first k� 1 components of ˜lk are zero since this is the case for lk and
since the permutations Pk+1, . . . , Pn�1 only permute components of index � k + 1. Therefore, Equation (5.2)
can be rewritten as:

PA = L̃U

where P = Pn�1 . . . P1 is a permutation matrix, and L̃ = [˜l1 . . .

˜

ln] is unit lower triangular, and U is upper
triangular.

There is one situation where the algorithm above can still fail: this if for some k, all the entries in the k’th
column of Ak�1 are zero. In this case one can choose lk to be the vector with a 1 at position k and zero
elsewhere, and choose u

>
k to be the k’th row of Ak�1, and Pk = I (identity matrix). With this choice, the first

k rows and columns of Ak = Ak�1 � lku
>
k become zero as desired (this is not the only choice of Pk, lk,uk that

works in this case; other choices are possible).

We have thus shown that for any matrix A (even singular) one can find a permutation matrix P such that PA

has an LU factorization.

Pivoting is not only important to find an element that is nonzero, but also for the overall numerical stability of
the algorithm. A common choice of pivot p is to take p � k such that |(Ak�1)p,k| is maximum. This ensures in
particular that the entries of lk are all bounded above by 1 in magnitude.

Symmetric matrices Let A be an n⇥n symmetric matrix (i.e., Ak,` = A`,k). An analogue of LU factorization
that takes advantage of symmetry consists in expressing A in the form of the product LDL

>, where L is
n ⇥ n lower triangular, with ones on its diagonal and D is a diagonal matrix. This is a special case of an LU
factorization with U = DL

>. If we let l1, . . . , ln be the columns of L then this factorization takes the form
A =

Pn
k=1 Dk,klkl

>
k . To compute this factorization, we can use an algorithm very similar to the one for the

computation of LU factorization (without pivoting): Set A0 = A and for k = 1, 2, . . . , n let lk be the multiple
of the kth column of Ak�1 such that Lk,k = 1. Set Dk,k = (Ak�1)k,k and form Ak = Ak�1 �Dk,klkl

>
k .

Example Let A = A0 =


2 4
4 11

�
. Hence l1 =


1
2

�
, D1,1 = 2 and

A1 = A0 �D1,1l1l
>
1 =


2 4
4 11

�
� 2


1 2
2 4

�
=


0 0
0 3

�
.

We deduce that l2 =


0
1

�
, D2,2 = 3 and A =


1 0
2 1

� 
2 0
0 3

� 
1 2
0 1

�
.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

2
A permutation matrix is a matrix with exactly one 1 in each row and in each column; the remaining entries being 0. For

example P =

⇥
0 1
1 0

⇤
is a permutation matrix and PA exchanges the two rows of A.

1

Symmetric positive definite matrices Recall: A is positive definite if x>
Ax > 0 for all x 6= 0.

Theorem Let A be a real n ⇥ n symmetric matrix. It is positive definite if and only if it has an LDL

>

factorization in which the diagonal elements of D are all positive.

Proof. Suppose that A = LDL

> and let x 2 Rn \ {0}. Since L is nonsingular (it is lower triangular and
all diagonal elements are equal to 1), y := L

>
x 6= 0. Then x

>
Ax = y

>
Dy =

Pn
k=1 Dk,ky

2
k > 0, hence A is

positive definite.
Conversely, suppose that A is positive definite. We wish to demonstrate that an LDL

> factorization exists.
We denote by ek 2 Rn the kth unit vector. Hence e

>
1 Ae1 = A1,1 > 0 and l1 & D1,1 are well defined. We now

show that (Ak�1)k,k > 0 for k = 1, 2, This is true for k = 1 and we continue by induction, assuming that

Ak�1 = A�Pk�1
j=1 Dj,jljl

>
j has been computed successfully.

Define x 2 Rn as the solution of the following system of equations: l

>
j x = 0, j = 1, . . . , k � 1, xk = 1 and

xj = 0 for j = k + 1, . . . , n. This is a system of n linear equations in the unknown x 2 Rn. The matrix of this
system of equations is upper triangular with ones on the diagonal hence it is invertible and our system has a
unique solution. Now observe that since the first k � 1 rows & columns of Ak�1 vanish, and since xk = 1 and
the components k+1, . . . , n of x vanish we have (Ak�1)k,k = x

>
Ak�1x. Thus, from the definition of Ak�1 and

the choice of x,

(Ak�1)k,k = x

>
Ak�1x = x

>

0

@
A�

k�1X

j=1

Dj,jljl
>
j

1

A
x = x

>
Ax�

k�1X

j=1

Dj,j(l
>
j x)

2 = x

>
Ax > 0,

as required. Hence (Ak�1)k,k > 0, k = 1, 2, . . . , n, and the factorization exists. 2

Conclusion It is possible to check if a symmetric matrix is positive definite by trying to form its LDL

>

factorization.

Cholesky factorization DefineD1/2 as the diagonal matrix whose (k, k) element isD
1/2
k,k , henceD

1/2
D

1/2 = D.
Then, A being positive definite, we can write

A = (LD1/2)(D1/2
L

>) = (LD1/2)(LD1/2)>.

In other words, letting L̃ := LD

1/2, we obtain the Cholesky factorization A = L̃L̃

>.

Sparse matrices It is often required to solve very large systems Ax = b (n = 105 is considered small in this
context!) where nearly all the elements of A are zero. Such a matrix is called sparse and e�cient solution of
Ax = b should exploit sparsity. In particular, we wish the matrices L and U to inherit as much as possible of
the sparsity of A and for the cost of computation to be determined by the number of nonzero entries, rather
than by n. The following theorem shows that certain zeros of A are always inherited by an LU factorization.

Theorem Let A = LU be an LU factorization (without pivoting) of a sparse matrix. Then all leading zeros in
the rows of A to the left of the diagonal are inherited by L and all the leading zeros in the columns of A above
the diagonal are inherited by U .

Proof We assume that Uk,k 6= 0 for all k = 1, . . . , n which is the same as saying that (Ak�1)k,k 6= 0 when
running the LU factorization algorithm (without pivoting). If Ai,1 = 0 this means that Li,1U1,1 = 0 and so
Li,1 = 0. If furthermore Ai,2 = 0 we get Li,1U1,2+Li,2U2,2 = 0 which implies Li,2 = 0 since Li,1 = 0. In general
we get that if Ai,1 = · · · = Ai,j = 0 where j < i then Li,1 = · · · = Li,j = 0. A similar reasoning applies for
leading zeros in the columns of A above the diagonal. 2

Banded matrices The matrix A is a banded matrix if there exists an integer r < n such that Ai,j = 0 for
|i � j| > r, i, j = 1, 2, . . . , n. In other words, all the nonzero elements of A reside in a band of width 2r + 1
along the main diagonal. In that case, according to the previous theorem, A = LU implies that Li,j = Ui,j = 0
8 |i� j| > r and sparsity structure is inherited by the factorization.
In general, the expense of calculating an LU factorization of an n⇥ n dense matrix A is O�

n

3
�
operations and

the expense of solving Ax = b, provided that the factorization is known, is O�
n

2
�
. However, in the case of a

banded A, we need just O�
r

2
n

�
operations to factorize and O(rn) operations to solve a linear system. If r ⌧ n

this represents a very substantial saving!

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 14

1

Sparse matrices It is often required to solve very large systems Ax = b (n = 105 is considered small in this
context!) where nearly all the elements of A are zero. Such a matrix is called sparse and e�cient solution of
Ax = b should exploit sparsity. In particular, we wish the matrices L and U to inherit as much as possible of
the sparsity of A and for the cost of computation to be determined by the number of nonzero entries, rather
than by n. The following theorem shows that certain zeros of A are always inherited by an LU factorization.

Theorem Let A = LU be an LU factorization (without pivoting) of a sparse matrix. Then all leading zeros in
the rows of A to the left of the diagonal are inherited by L and all the leading zeros in the columns of A above
the diagonal are inherited by U .

Proof We assume that Uk,k 6= 0 for all k = 1, . . . , n which is the same as saying that (Ak�1)k,k 6= 0 when
running the LU factorization algorithm (without pivoting). If Ai,1 = 0 this means that Li,1U1,1 = 0 and so
Li,1 = 0. If furthermore Ai,2 = 0 we get Li,1U1,2+Li,2U2,2 = 0 which implies Li,2 = 0 since Li,1 = 0. In general
we get that if Ai,1 = · · · = Ai,j = 0 where j < i then Li,1 = · · · = Li,j = 0. A similar reasoning applies for
leading zeros in the columns of A above the diagonal. 2

Banded matrices The matrix A is a banded matrix if there exists an integer r < n such that Ai,j = 0 for
|i � j| > r, i, j = 1, 2, . . . , n. In other words, all the nonzero elements of A reside in a band of width 2r + 1
along the main diagonal. In that case, according to the previous theorem, A = LU implies that Li,j = Ui,j = 0
8 |i� j| > r and sparsity structure is inherited by the factorization.
In general, the expense of calculating an LU factorization of an n⇥ n dense matrix A is O�

n3
�
operations and

the expense of solving Ax = b, provided that the factorization is known, is O�
n2

�
. However, in the case of a

banded A, we need just O�
r2n

�
operations to factorize and O(rn) operations to solve a linear system. If r ⌧ n

this represents a very substantial saving!

General sparse matrices feature a wide range of applications, e.g. the solution of partial di↵erential equations,
and there exists a wealth of methods for their solution. One approach is e�cient factorization, that minimizes
fill-in (a fill-in is an zero entry of the matrix A that gets filled in during the factorization, i.e., Aij = 0
and yet Lij 6= 0 (if i > j) or Uij 6= 0 (if j > i)). Yet another is to use iterative methods (cf. Part II
Numerical Analysis course). There also exists a substantial body of other, highly e↵ective methods, e.g. Fast
Fourier Transforms, preconditioned conjugate gradients and multigrid techniques (cf. Part II Numerical Analysis
course), fast multipole techniques and much more.

Sparsity and graph theory An exceedingly powerful (and beautiful) methodology of ordering pivots to
minimize fill-in of sparse matrices uses graph theory and, like many other cool applications of mathematics in
numerical analysis, is alas not in the schedules :-(

5.2 QR factorization of matrices

Scalar products, norms and orthogonality We first recall a few definitions. Rn is the linear space of all
real n-tuples.

• For all u,v 2 Rn we define the scalar product

hu,vi = hv,ui =
nX

j=1

ujvj = u

>
v = v

>
u .

• The vectors q1, q2, . . . , qm 2 Rn are orthonormal if

hqk, q`i =
⇢

1, k = `,
0, k 6= `,

k, ` = 1, 2, . . . ,m.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

• An n⇥ n real matrix Q is orthogonal if all its columns are orthonormal. Since (Q>Q)k,` = hqk, q`i, this
implies that Q>Q = I (I is the unit matrix). Hence Q�1 = Q> and QQ> = QQ�1 = I. We conclude that
the rows of an orthogonal matrix are also orthonormal, and that Q> is an orthogonal matrix. Further,
1 = det I = det(QQ>) = detQ detQ> = (detQ)2, and thus we deduce that detQ = ±1, and that an
orthogonal matrix is nonsingular.

The QR factorization The QR factorization of an m ⇥ n matrix A has the form A = QR, where Q is an
m⇥m orthogonal matrix and R is an m⇥ n upper triangular matrix (i.e., Ri,j = 0 for i > j). When m � n, a
reduced QR factorization of A is a factorization A = QR where Q is m ⇥ n with orthonormal columns, and R
is n⇥ n upper triangular.

Application in linear system solving Let m = n and A be nonsingular. We can solve Ax = b by calculating
the QR factorization of A and solving first Qy = b (hence y = Q>

b) and then Rx = y (a triangular system!).

Interpretation of the QR factorization Let m � n and denote the columns of A and Q by a1,a2, . . . ,an

and q1, q2, . . . , qn respectively. In a reduced QR factorization:

[a1 a2 · · · an] = [q1 q2 · · · qn]

2

66664

R1,1 R1,2 · · · R1,n

0 R2,2

...
...

. . .
. . .
0 Rn,n

3

77775
,

we have ak =
Pk

j=1 Rj,kqj , k = 1, 2, . . . , n. In other words, Q has the property that each kth column of A can
be expressed as a linear combination of the first k columns of Q.

The Gram–Schmidt algorithm Assume that m � n and that the columns of A are linearly independent.
We will see how to construct a reduced QR factorization of A, i.e., Q 2 Rm⇥n having orthonormal columns,
R 2 Rn⇥n upper-triangular and A = QR: in other words,

X̀

k=1

Rk,`qk = a`, ` = 1, 2, . . . , n, where A = [a1 a2 · · · an]. (5.2)

Equation (5.2) for ` = 1 tells us that we must have q1 = a1/ka1k and R1,1 = ka1k. Next we form the vector
b = a2�hq1,a2iq1. It is orthogonal to q1, since hq1,a2�hq1,a2iq1i = hq1,a2i�hq1,a2ihq1, q1i = 0. Since the
columns of A are assumed linearly independent, b 6= 0 and we set q2 = b/kbk, hence q1 and q2 are orthonormal.
Moreover,

hq1,a2iq1 + kbkq2 = hq1,a2iq1 + b = a2,

hence, to obey (5.2) for ` = 2, we let R1,2 = hq1,a2i, R2,2 = kbk.
More generally we get the following classical Gram-Schmidt algorithm to compute a QR factorization: Set
q1 = a1/ka1k and R11 = ka1k. For j = 2, . . . , n: Set Rij = hqi,aji for i  j � 1, and bj = aj �

Pj�1
i=1 Rijqi.

Set qj = bj/kbjk and Rjj = kbjk.
The total cost of the classical Gram–Schmidt algorithm is O�

n2m
�
, since at each iteration j a total of O(mj)

operations are performed.

The disadvantage of the classical Gram–Schmidt is its ill-conditioning : using finite arithmetic, small imprecisions
in the calculation of inner products spread rapidly, leading to e↵ective loss of orthogonality. Errors accumulate
fast and the computed o↵-diagonal elements of Q>Q may become large.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 15

1

The Gram–Schmidt algorithm Assume that m � n and that the columns of A 2 Rm⇥n are linearly
independent. We will see how to construct a reduced QR factorization of A, i.e., Q 2 Rm⇥n having orthonormal
columns, R 2 Rn⇥n upper-triangular and A = QR: in other words,

X̀

k=1

Rk,`qk = a`, ` = 1, 2, . . . , n, where A = [a
1

a
2

· · · an]. (5.2)

Equation (5.2) for ` = 1 tells us that we must have q
1

= a
1

/ka
1

k and R
1,1 = ka

1

k. Next we form the vector
b = a

2

�hq
1

,a
2

iq
1

. It is orthogonal to q
1

, since hq
1

,a
2

�hq
1

,a
2

iq
1

i = hq
1

,a
2

i�hq
1

,a
2

ihq
1

, q
1

i = 0. Since the
columns of A are assumed linearly independent, b 6= 0 and we set q

2

= b/kbk, hence q
1

and q
2

are orthonormal.
Moreover,

hq
1

,a
2

iq
1

+ kbkq
2

= hq
1

,a
2

iq
1

+ b = a
2

,

hence, to obey (5.2) for ` = 2, we let R
1,2 = hq

1

,a
2

i, R
2,2 = kbk.

More generally we get the following classical Gram-Schmidt algorithm to compute a QR factorization: Set
q
1

= a
1

/ka1k and R
11

= ka1k. For j = 2, . . . , n: Set Rij = hqi,aji for i  j � 1, and bj = aj �
Pj�1

i=1

Rijqi.
Set qj = bj/kbjk and Rjj = kbjk.
The total cost of the classical Gram–Schmidt algorithm is O�

n2m
�
, since at each iteration j a total of O(mj)

operations are performed.

The disadvantage of the classical Gram–Schmidt is its ill-conditioning : using finite arithmetic, small imprecisions
in the calculation of inner products spread rapidly, leading to e↵ective loss of orthogonality. Errors accumulate
fast and the computed o↵-diagonal elements of Q>Q may become large.

The Gram-Schmidt algorithm operates by performing “triangular orthogonalization” on A: triangular operations
are applied to A to produce the orthonormal system q

1

, . . . , qn. We are now going to see two algorithms
for QR factorization that are based on “orthogonal triangularization”: we will repeatedly apply orthogonal
transformations to A to put it into triangular form.

Orthogonal transformations Given real m⇥ n matrix A
0

= A, we seek a sequence ⌦
1

,⌦
2

, . . . ,⌦k of m⇥m
orthogonal matrices such that the matrix Ai := ⌦iAi�1

has more zero elements below the main diagonal than
Ai�1

for i = 1, 2, . . . , k and so that the manner of insertion of such zeros is such that Ak is upper triangular.
We then let R = Ak, therefore ⌦k⌦k�1

· · ·⌦
2

⌦
1

A = R and Q = (⌦k⌦k�1

· · ·⌦
1

)�1 = (⌦k⌦k�1

· · ·⌦
1

)> =
⌦>

1

⌦>
2

· · ·⌦>
k . Hence A = QR, where Q is orthogonal and R upper triangular.

Givens rotations Recall that the matrix associated to clockwise rotation in R2 by angle ✓ is
⇥

cos ✓ sin ✓
� sin ✓ cos ✓

⇤
. An

m⇥m Givens rotation matrix ⌦ is an orthogonal matrix specified by two integers 1  p < q  m and an angle
✓ 2 [�⇡,⇡], which coincides with the identity matrix except for the 2⇥2 submatrix associated to rows/columns
{p, q} which correspond to a 2⇥2 rotation matrix. Specifically, we use the notation ⌦[p,q], where 1  p < q  m
for a matrix such that

⌦[p,q]
p,p = ⌦[p,q]

q,q = cos ✓, ⌦[p,q]
p,q = sin ✓, ⌦[p,q]

q,p = � sin ✓

for some ✓ 2 [�⇡,⇡]. The remaining elements of ⌦[p,q] are those of an identity matrix. For example,

m = 4 =) ⌦[1,2] =

2

664

cos ✓ sin ✓ 0 0
� sin ✓ cos ✓ 0 0

0 0 1 0
0 0 0 1

3

775 , ⌦[2,4] =

2

664

1 0 0 0
0 cos ✓ 0 sin ✓
0 0 1 0
0 � sin ✓ 0 cos ✓

3

775 .

Geometrically, such matrices correspond to a rotation in the two-dimensional coordinate subspace spanned by
{ep, eq}, where ei is the vector with zeros everywhere except for a 1 in position i.

1
Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Theorem Let A be an m ⇥ n matrix. Then, for every 1  p < q  m, i 2 {p, q} and 1  j  n, there exists
✓ 2 [�⇡,⇡] such that (⌦[p,q]A)i,j = 0. Moreover, all the rows of ⌦[p,q]A, except for the pth and the qth, are the
same as the corresponding rows of A, whereas the pth and the qth rows of ⌦[p,q]A are linear combinations of
the pth and qth rows of A.
Proof. Let i = q. If Ap,j = Aq,j = 0 then any ✓ will do, otherwise we let

cos ✓ := Ap,j/
q
A2

p,j +A2

q,j , sin ✓ := Aq,j/
q
A2

p,j +A2

q,j .

Hence
(⌦[p,q]A)q,k = �(sin ✓)Ap,k + (cos ✓)Aq,k, k = 1, 2, . . . , n) (⌦[p,q]A)q,j = 0.

Likewise, when i = p we let cos ✓ := Aq,j/
q
A2

p,j +A2

q,j , sin ✓ := �Ap,j/
q

A2

p,j +A2

q,j .

The last two statements of the theorem are an immediate consequence of the construction of ⌦[p,q]. 2

An example: Suppose that A is 3⇥ 3. We can force zeros underneath the main diagonal as follows.

1 First pick ⌦[1,2] so that (⌦[1,2]A)
2,1 = 0) ⌦[1,2]A =

2

4
⇥ ⇥ ⇥
0 ⇥ ⇥
⇥ ⇥ ⇥

3

5.

2 Next pick ⌦[1,3] so that (⌦[1,3]⌦[1,2]A)
3,1 = 0. Multiplication by ⌦[1,3] doesn’t alter the second row, hence

(⌦[1,3]⌦[1,2]A)
2,1 remains zero) ⌦[1,3]⌦[1,2]A =

2

4
⇥ ⇥ ⇥
0 ⇥ ⇥
0 ⇥ ⇥

3

5.

3 Finally, pick ⌦[2,3] so that (⌦[2,3]⌦[1,3]⌦[1,2]A)
3,2 = 0. Since both second and third row of ⌦[1,3]⌦[1,2]A have

a leading zero, (⌦[2,3]⌦[1,3]⌦[1,2]A)
2,1 = (⌦[2,3]⌦[1,3]⌦[1,2]A)

3,1 = 0. It follows that ⌦[2,3]⌦[1,3]⌦[1,2]A is upper
triangular. Therefore

R = ⌦[2,3]⌦[1,3]⌦[1,2]A =

2

4
⇥ ⇥ ⇥
0 ⇥ ⇥
0 0 ⇥

3

5 , Q = (⌦[2,3]⌦[1,3]⌦[1,2])>.

The Givens algorithm Given m ⇥ n matrix A: For each j from 1 to n and i from j + 1 to m, replace A by
⌦[j,i]A where ⌦[j,i] is chosen to annihilate the (i, j) entry.

This algorithm transforms A into an upper triangular matrix by a sequence of orthogonal transformations.
The final orthogonal matrix Q however is not computed explicitly in this algorithm. If we want to compute Q
explicitly, we commence by letting ⌦ be the m⇥m identity matrix and, each time A is premultiplied by ⌦[j,i],
we also premultiply ⌦ by the same rotation. Hence the final ⌦ is the product of all the rotations, in correct
order, and we let Q = ⌦>. Note however, in most applications we don’t need Q but, instead, just the action of
Q> on a given vector (recall: solution of linear systems!). This can be accomplished by multiplying the given

vector, e.g., the right-hand side b if we are solving a linear system, by successive rotations.

The cost For each j < i, the cost of computing ⌦[j,i]A is O(n) since we just have to replace the j’th and i’th
rows of A by their appropriate linear combinations. This has to be done less than mn times (the number of
pairs (j, i)) and so the total cost is O�

mn2

�
.

2

Mathematical Tripos Part IB: Lent 2019

Numerical Analysis – Lecture 16

1

Householder reflections Let u 2 Rm \ {0}. The m⇥m matrix I � 2uu
>

kuk2 is called a Householder reflection.
Each such matrix is symmetric and orthogonal, since

✓
I � 2

uu

>

kuk2
◆> ✓

I � 2
uu

>

kuk2
◆

=

✓
I � 2

uu

>

kuk2
◆2

= I � 4
uu

>

kuk2 + 4
u(u>

u)u>

kuk4 = I.

Householder reflections o↵er an alternative to Given rotations in the calculation of a QR factorization.

Householder algorithm Our goal is to multiply an m⇥ n matrix A by a sequence of Householder reflections
so that each product induces zeros under the diagonal in an entire column.

At the first step we seek a reflection that transforms the first column a1 of A to a multiple of e1. Since the
Householder reflection is orthogonal (it preserves Euclidean norm) the latter has to be ±ka1ke1 where we are
free to choose the sign. The Householder reflection that does this operation is given by the choice of vector
u = a1 � (±ka1ke1). For numerical stability the sign is usually chosen to be �sign(A11).

More generally, at the beginning of the k’th step of the algorithm, the columns 1 to k � 1 have been processed
and have zeros under their diagonal element. Our goal is to find a Householder reflection that will induce zeros
under the diagonal element of the k’th column. To do so we use a block orthogonal matrix [I 0

0 H] where I is a
(k � 1)⇥ (k � 1) identity matrix, and H is a (m� k + 1)⇥ (m� k + 1) Householder reflection associated with
the choice ũ = ãk + sign(Akk)kãkkẽ1, where ãk is the vector of size m � k + 1 consisting of the entries of A
under the diagonal in the k’th column, and ẽ1 is the vector of size m� k + 1 with a 1 in the first position and
zero elsewhere.

To summarize it is convenient to use the (Matlab-style) notation where Ak:m,j indicates the vector of size
m� k + 1 obtained from rows k, . . . ,m of column j of A. Then the algorithm can be written as follows:

Given A 2 Rm⇥n with m � n. For k = 1 to n:

• Let ãk = Ak:m,k 2 Rm�k+1

• Let ẽ1 be the vector of size m� k + 1 with a 1 in the first position and zero elsewhere.

• Let ũ = ãk + sign(Akk)kãkkẽ1
• For each column j = k, . . . , n update Ak:m,j = Ak:m,j � 2(ũTAk:m,j)ũ/kũk2.

Example (k = 3, assuming the first two columns have already been processed)

A =

2

66664

2 4 7
0 3 �1
0 0 2
0 0 1
0 0 �2

3

77775
! ã3 =

2

4
2
1
�2

3

5 , ũ =

2

4
5
1
�2

3

5 !

2

66664

2 4 7
0 3 �1
0 0 �3
0 0 0
0 0 0

3

77775
.

Calculation of Q Like for the case of Givens algorithm, the matrix Q is not explicitly formed. To form Q

explicitly we start with ⌦ = I initially and, for each step we replace ⌦, by

✓
I � 2

uu

>

kuk2
◆
⌦ = ⌦� 2

kuk2u(u
>⌦)

where u =
h
0
ũ

i
is obtained from ũ by adding k � 1 zeros above it2. However, if we require just the vector c =

Q>
b, say, rather than the matrix Q, then we set initially c = b and in each stage replace c by

✓
I � 2

uu

>

kuk2
◆
c =

c� 2
u

>
c

kuk2u.
1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
2Indeed, note that the reflection I � 2uu>/kuk2 is the same as the block orthogonal matrix

⇥
I 0
0 H

⇤
where H is the Householder

reflection corresponding to ũ.

1

Givens or Householder? If A is dense, it is in general more convenient to use Householder reflections. Givens
rotations come into their own, however, when A has many leading zeros in its rows. E.g., if an n⇥ n matrix A
consists of zeros underneath the first subdiagonal, they can be ‘rotated away’ in just n� 1 Givens rotations, at
the cost of O�

n2
�
operations!

5.3 Linear least squares

Statement of the problem Suppose that an m ⇥ n matrix A and a vector b 2 Rm are given. The equation
Ax = b, where x 2 Rn is unknown, has in general no solution (if m > n) or an infinity of solutions (if
m < n). Problems of this form occur frequently when we collect m observations (which, typically, are prone to
measurement error) and wish to exploit them to form an n-variable linear model, where n ⌧ m. (In statistics,
this is known as linear regression.) Bearing in mind the likely presence of errors in A and b, we seek x 2 Rn

that minimises the Euclidean length kAx� bk. This is the least squares problem.

Theorem x 2 Rn is a solution of the least squares problem i↵ A>(Ax� b) = 0.
Proof. If x is a solution then it minimises

f(x) := kAx� bk2 = hAx� b, Ax� bi = x

>A>Ax� 2x>A>
b+ b

>
b.

Hence rf(x) = 0. But 1
2rf(x) = A>Ax�A>

b, hence A>(Ax� b) = 0.
Conversely, suppose that A>(Ax� b) = 0 and let u 2 Rn. Hence, letting y = u� x,

kAu� bk2 = hAx+Ay � b, Ax+Ay � bi = hAx� b, Ax� bi+ 2y>A>(Ax� b)

+ hAy, Ayi = kAx� bk2 + kAyk2 � kAx� bk2

and x is indeed optimal. 2

Corollary Optimality of x , the vector Ax� b is orthogonal to all columns of A.

Normal equations One way of finding optimal x is by solving the n ⇥ n linear system A>Ax = A>
b; this

is the method of normal equations. This approach is popular in many applications. However, there are three
disadvantages. Firstly, A>A might be singular, secondly sparse A might be replaced by a dense A>A and,
finally, forming A>A might lead to loss of accuracy. Thus, suppose that our computer works in the IEEE
arithmetic standard (⇡ 15 significant digits) and let

A =


108 �108

1 1

�
=) A>A =


1016 + 1 �1016 + 1

�1016 + 1 1016 + 1

�
⇡ 1016


1 �1

�1 1

�
.

Given b = [0, 2]> the solution of Ax = b is [1, 1]>, as can be easily found by Gaussian elimination. However,
our computer ‘believes’ that A>A is singular!

QR and least squares
Let A be an m ⇥ n matrix with m � n, and let A = QR be a reduced QR factorization where Q is m ⇥ n has
orthonormal columns and R is n⇥n upper triangular. We know that x is a solution to the least squares problem
i↵ Ax� b is orthogonal to all columns of A. Since the columns of Q span the same space as the columns of A
this is equivalent to saying that Q>(Ax�b) = 0. Since the columns of Q form an orthonormal system we have3

Q>Q = In, and so this leads to the equation Rx = Q>
b. The latter can be solved using backsubstitution.

3Note however that QQ> is not equal to the identity matrix! (Q is a rectangular matrix here)

2

