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Numerical Analysis – Lecture 31

2 Orthogonal polynomials

2.1 Orthogonality in general linear spaces

We have already seen the scalar product 〈x,y〉 =
∑n
i=1 xiyi, acting on x,y ∈ Rn. Likewise, given arbitrary

weights w1, w2, . . . , wn > 0, we may define 〈x,y〉 =
∑n
i=1 wixiyi. In general, a scalar (or inner) product is any

function V× V→ R, where V is a vector space over the reals, subject to the following three axioms:
Symmetry: 〈x,y〉 = 〈y,x〉 ∀x,y ∈ V;
Nonnegativity: 〈x,x〉 ≥ 0 ∀x ∈ V and 〈x,x〉 = 0 iff x = 0; and
Linearity: 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉 ∀x,y, z ∈ V, a, b ∈ R.
Given a scalar product, we may define orthogonality: x,y ∈ V are orthogonal if 〈x,y〉 = 0.
Let V = C[a, b], w ∈ V be a fixed positive function and define

〈f, g〉 :=

∫ b

a

w(x)f(x)g(x) dx (2.1)

for all f, g ∈ V. It is easy to verify all three axioms of the scalar product.

2.2 Orthogonal polynomials – definition, existence, uniqueness

Given a scalar product in V = P[x] (the vector space of polynomials in x, with no bound on the degree), we
seek to define a sequence of polynomials p0, p1, p2, . . . such that:

• deg(pn) = n for all n ≥ 0; and

• 〈pn, pm〉 = 0 for all n 6= m.

This sequence will be called the orthogonal polynomials, and pn will be called the n’th orthogonal polynomial.
Observe that for such sequence, (p0, . . . , pn) is an orthogonal basis of Pn[x] for any n ≥ 0. Note: Different
scalar products in general lead to different orthogonal polynomials.

The existence of orthogonal polynomials is the object of the next theorem. A polynomial in Pn[x] is monic if
the coefficient of xn therein equals one.

Theorem For every n ≥ 0 there exists a unique monic orthogonal polynomial pn of degree n.

Proof. We let p0(x) ≡ 1 and prove the theorem by induction on n. Thus, suppose that p0, p1, . . . , pn satisfy
the induction hypothesis. To define pn+1 let q(x) := xn+1 ∈ Pn+1[x] and, motivated by the Gram–Schmidt
algorithm, choose

pn+1(x) = q(x)−
n∑
k=0

〈q, pk〉
〈pk, pk〉

pk(x). (2.2)

Clearly, pn+1 ∈ Pn+1[x] and it is monic (since all the terms in the sum are of degree ≤ n).
Let m ∈ {0, 1, . . . , n}. It follows from (2.2) and the induction hypothesis that

〈pn+1, pm〉 = 〈q, pm〉 −
n∑
k=0

〈q, pk〉
〈pk, pk〉

〈pk, pm〉 = 〈q, pm〉 −
〈q, pm〉
〈pm, pm〉

〈pm, pm〉 = 0.

Hence, pn+1 is orthogonal to p0, . . . , pn. To prove uniqueness, we suppose the existence of two monic orthogonal
polynomials pn+1, p̃n+1 ∈ Pn+1[x]. Let p := pn+1 − p̃n+1 ∈ Pn[x], hence 〈pn+1, p〉 = 〈p̃n+1, p〉 = 0, and this
implies

0 = 〈pn+1, p〉 − 〈p̃n+1, p〉 = 〈pn+1 − p̃n+1, p〉 = 〈p, p〉,

and we deduce p ≡ 0. 2

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
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Example Legendre polynomials Define the scalar product 〈f, g〉 :=
∫ 1

−1
f(x)g(x) dx for f, g ∈ P[x]. The orthog-

onal polynomials arising from this scalar product is called Legendre polynomials. The first polynomials of this
sequence are:

p0(x) = 1, p1(x) = x, p2(x) = x2 − (1/3), p3(x) = x3 − (3/5)x, p4(x) = x4 − (30/35)x2 + (3/35).

Well-known examples of orthogonal polynomials include:

Name Notation Interval [a, b] Weight function
Legendre Pn [−1, 1] w(x) ≡ 1
Chebyshev Tn [−1, 1] w(x) = (1− x2)−1/2

Laguerre Ln [0,∞) w(x) = e−x

Hermite Hn (−∞,∞) w(x) = e−x
2

The weight function refers to the function w in the scalar product definition of Equation (2.1).

2.3 The three-term recurrence relation

How to construct orthogonal polynomials? (2.2) might help, but it suffers from loss of accuracy due to impre-
cisions in the calculation of scalar products. A considerably better procedure follows from our next theorem.
For the next theorem we assume the scalar product satisfies 〈xp, q〉 = 〈p, xq〉 for any p, q ∈ P[x].

Theorem Assuming the scalar product on P[x] satisfies 〈xp, q〉 = 〈p, xq〉 for all p, q ∈ P[x], monic orthogonal
polynomials are given by the formula

p−1(x) ≡ 0, p0(x) ≡ 1,

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), n = 0, 1, . . . , (2.3)

where

αn :=
〈pn, xpn〉
〈pn, pn〉

, βn =
〈pn, pn〉

〈pn−1, pn−1〉
> 0.

Remark: The assumption 〈xp, q〉 = 〈p, xq〉 on the scalar product is satisfied by most common examples of
scalar products. It is satisfied for example by (2.1).
Proof. Pick n ≥ 0 and let ψ(x) := pn+1(x) − (x − αn)pn(x) + βnpn−1(x). Since pn and pn+1 are monic, it

follows that ψ ∈ Pn[x]. Moreover, because of orthogonality of pn−1, pn, pn+1,

〈ψ, p`〉 = 〈pn+1, p`〉 − 〈pn, (x− αn)p`〉+ βn〈pn−1, p`〉 = 0, ` = 0, 1, . . . , n− 2.

Because of monicity, xpn−1 = pn + q, where q ∈ Pn−1[x]. Thus, from the definition of αn, βn,

〈ψ, pn−1〉 = −〈pn, xpn−1〉+ βn〈pn−1, pn−1〉 = −〈pn, pn〉+ βn〈pn−1, pn−1〉 = 0,

〈ψ, pn〉 = −〈xpn, pn〉+ αn〈pn, pn〉 = 0.

Every p ∈ Pn[x] that obeys 〈p, p`〉 = 0, ` = 0, 1, . . . , n, must necessarily be the zero polynomial. For suppose
that it is not so and let xs be the highest power of x in p. Then 〈p, ps〉 6= 0, which is impossible. We deduce
that ψ ≡ 0, hence (2.3) is true. 2

Example Chebyshev polynomials We choose the scalar product

〈f, g〉 :=

∫ 1

−1

f(x)g(x)
dx√

1− x2
, f, g ∈ C[−1, 1]

and define Tn ∈ Pn[x] by the relation Tn(cos θ) = cos(nθ). Hence T0(x) ≡ 1, T1(x) = x, T2(x) = 2x2 − 1 etc.
Changing the integration variable,

〈Tn, Tm〉 =

∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=

∫ π

0

cosnθ cosmθ dθ = 1
2

∫ π

0

[cos(n+m)θ + cos(n−m)θ] dθ = 0

whenever n 6= m. The recurrence relation for Chebyshev polynomials is particularly simple, Tn+1(x) =
2xTn(x)−Tn−1(x), as can be verified at once from the identity cos[(n+1)θ]+cos[(n−1)θ] = 2 cos(θ) cos(nθ). Note
that the Tns aren’t monic, hence the inconsistency with (2.3). To obtain monic polynomials take Tn(x)/2n−1,
n ≥ 1.
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