Mathematical Tripos Part IB: Lent 2020
Numerical Analysis — Lecture 3!

2 Orthogonal polynomials

2.1 Orthogonality in general linear spaces

We have already seen the scalar product (z,y) = Y1, z;y;, acting on x,y € R". Likewise, given arbitrary
weights wy,ws, ..., wy, > 0, we may define (z,y) = > | w;z;y;. In general, a scalar (or inner) product is any
function V x V — R, where V is a vector space over the reals, subject to the following three axioms:
Symmetry: (x,y) = (y,x) Ve,y € V;

Nonnegativity: (x,x) > 0Vx € Vand (x,x) =0 iff x = 0; and

Linearity: (ax + by, z) = a{x, z) + bly,z) Ve, y,z € V, a,b € R.

Given a scalar product, we may define orthogonality: x,y € V are orthogonal if (x,y) = 0.

Let V= Cla,b], w € V be a fixed positive function and define

b
() = [ wla)f(e)g(a) do (21)
for all f,g € V. It is easy to verify all three axioms of the scalar product.

2.2 Orthogonal polynomials — definition, existence, uniqueness

Given a scalar product in V = P[z] (the vector space of polynomials in z, with no bound on the degree), we
seek to define a sequence of polynomials pg, p1, p2, - . . such that:

e deg(p,) =n for all n > 0; and
o (pn,pm) =0 for all n # m.

This sequence will be called the orthogonal polynomials, and p, will be called the n’th orthogonal polynomial.
Observe that for such sequence, (po,...,p,) is an orthogonal basis of P,[z] for any n > 0. Note: Different
scalar products in general lead to different orthogonal polynomials.

The existence of orthogonal polynomials is the object of the next theorem. A polynomial in P,[z] is monic if
the coefficient of x™ therein equals one.

Theorem For every n > 0 there exists a unique monic orthogonal polynomial p,, of degree n.

Proof. We let po(z) = 1 and prove the theorem by induction on n. Thus, suppose that pg,p1, ..., p, satisfy
the induction hypothesis. To define p,11 let g(z) := 2" € P, 11[z] and, motivated by the Gram-Schmidt
algorithm, choose

Do () = alx) = 3 ALPR ) (2.2)

h—0 <pk>a pk>

Clearly, pp+1 € Ppi1[z] and it is monic (since all the terms in the sum are of degree < n).
Let m € {0,1,...,n}. It follows from (2.2) and the induction hypothesis that

— _ - <Qapk> _ _ <qapm> —
<pn+1>pm> - <q7pm> kZ:O <pk7pk> <pkapm> <Qapm> (pm7pm> <pm;pm> 0.

Hence, pj41 is orthogonal to po, ..., p,. To prove uniqueness, we suppose the existence of two monic orthogonal
polynomials pni1,Pnt1 € Pryifz]. Let p := ppy1 — Png1 € Prlz], hence (ppy1,p) = (Pnt1,p) = 0, and this
implies

0= (Pnt1.0) = Prt1,0) = Prt1 — Pn+1,0) = (P: D),
and we deduce p = 0. O
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Example Legendre polynomials Define the scalar product (f, g) f f(z)g(z)dx for f, g € P[z]. The orthog-
onal polynomials arising from this scalar product is called Legendre polynomwls The first polynomials of this
sequence are:

po(z) =1, pi(z) =z, po(x) =22 —(1/3), ps(x) =2 — (3/5)z, pa(x) = x* — (30/35)x? + (3/35).

Well-known examples of orthogonal polynomials include:

Name Notation | Interval [a, b] Weight function
Legendre P, [—1,1] w(z) =1
Chebyshev T, [-1,1] w(z) = (1 —2?)~1/2
Laguerre L, [0, 0) w(z)=e"
Hermite H, (—00,0) w(z) =

The weight function refers to the function w in the scalar product definition of Equation (2.1).

2.3 The three-term recurrence relation

How to construct orthogonal polynomials? (2.2) might help, but it suffers from loss of accuracy due to impre-
cisions in the calculation of scalar products. A considerably better procedure follows from our next theorem.
For the next theorem we assume the scalar product satisfies (xp, q) = (p,zq) for any p, ¢ € P[x].

Theorem Assuming the scalar product on P[z] satisfies (zp,q) = (p, zq) for all p,q € P[x], monic orthogonal
polynomials are given by the formula

p—1(x) =0, po(x) =1,
Prt1(®) = (T — an)pn(z) — Bppn-1(), n=0,1,..., (2.3)
where
oy, = <pn7xpn>, B, = (Dr> D) < 0.
<pn>pn> <pn71,pn71>

Remark: The assumption (zp,q) = (p,zq) on the scalar product is satisfied by most common examples of
scalar products. It is satisfied for example by (2.1).

Proof. Pick n > 0 and let ¥(z) := ppt1(x) — (x — an)pn(x) + Bnprn—1(z). Since p, and p,41 are monic, it
follows that ¢ € P,[z]. Moreover, because of orthogonality of p,,_1, Pn, D1,

<¢»pl> = <pn+17pf> - <p’n7 (x - an)p@) + Bn<pn717p€> = 07 L= 07 ]-7 cee,— 2.

Because of monicity, 2p,_1 = pn + ¢, where ¢ € P,_1[z]. Thus, from the definition of «,, 8,,

<’l/}apn71> - _<pnaxpn71> + ﬁn<pn71;pn71> - _<pn;pn> + ﬂn<pn71;pn71> - 07
W&Pn) = *<=’Epn7pn> + an<pn7pn> = 0.
Every p € P,[z] that obeys (p,ps) =0, £ = 0,1,...,n, must necessarily be the zero polynomial. For suppose

that it is not so and let 2° be the highest power of = in p. Then (p, ps) # 0, which is impossible. We deduce
that 1 = 0, hence (2.3) is true. O

Example Chebyshev polynomials We choose the scalar product

1 dx
- / @) feeCl-L

and define T}, € P,[z] by the relation T}, (cosf) = cos(nf). Hence Ty(z) = 1, Ti(x) = z, To(z) = 222 — 1 etc.
Changing the integration variable,

1 T
dz
T,, Ty = | T, " cosnb cosmb df = 7/ cos(n+m)0 + cos(n—m)f]df = 0
(T ) = [ Tt = [  feos(n-m)o -+ cos(n—m)0
whenever n # m. The recurrence relation for Chebyshev polynomials is particularly simple, T;,11(z) =
22T, (x)—T,—1(x), as can be verified at once from the identity cos[(n+1)8]+cos[(n—1)8] = 2 cos(#) cos(nf). Note
that the T),s aren’t monic, hence the inconsistency with (2.3). To obtain monic polynomials take T,,(z)/2" 1,
n>1.



