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Numerical Analysis – Lecture 61

We look at another example of application of the Peano kernel theorem.

Example We approximate a derivative by a linear combination of function values, f ′(0) ≈ − 3
2f(0)+2f(1)−

1
2f(2). Define L(f) := f ′(0)− [− 3

2f(0) + 2f(1)− 1
2f(2)] and it is easy to check that L(f) = 0 for f ∈ P2[x].

(Verify by trying f(x) = 1, x, x2 and using linearity of L.) Thus, for f ∈ C3[0, 2] we have

L(f) = 1
2

∫ 2

0

K(θ)f ′′′(θ) dθ

with K(θ) = L(x 7→ (x− θ)2+). For fixed θ, let g(x) := (x− θ)2+. Then

K(θ) = L(g) = g′(0)−
[
− 3

2g(0) + 2g(1)− 1
2g(2)

]
= 2(0− θ)+ −

[
− 3

2 (0− θ)2+ + 2(1− θ)2+ − 1
2 (2− θ)2+

]
=

 2θ − 3
2θ

2, 0 ≤ θ ≤ 1,
1
2 (2− θ)2, 1 ≤ θ ≤ 2,
0, else.

One can verify that
∫ 2

0
|K(θ)|dθ = 2

3 . Consequently for any f ∈ C3[0, 2] we have

|L(f)| ≤ 1

2!

∫ 2

0

|K(θ)f ′′′(θ)|dθ ≤ 1

2
‖f ′′′‖∞

∫ 2

0

|K(θ)|dθ =
1

3
‖f ′′′‖∞,

where ‖f ′′′‖∞ = maxx∈[0,2] |f ′′′(x)|.

4 Ordinary differential equations

We wish to approximate the exact solution of the ordinary differential equation (ODE)

y′ = f(t,y), t ≥ 0, (4.1)

where y ∈ RN and the function f : R × RN → RN is sufficiently ‘nice’. (In principle, it is enough for f to
be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we henceforth assume that
f is analytic: in other words, we are always able to expand locally into Taylor series.) The equation (4.1) is
accompanied by the initial condition y(0) = y0.
Our purpose is to approximate yn+1 ≈ y(tn+1), n = 0, 1, . . ., where tm = mh and the time step h > 0 is
small, from y0,y1, . . . ,yn and equation (4.1).

4.1 One-step methods

A one-step method is a map yn+1 = ϕh(tn,yn), i.e. an algorithm which allows yn+1 to depend only on
tn, yn, h and the ODE (4.1).

The Euler method: We know y and its slope y′ at t = 0 and wish to approximate y at t = h > 0.
The most obvious approach is to truncate y(h) = y(0) + hy′(0) + 1

2h
2y′′(0) + · · · at the h2 term. Since

y′(0) = f(t0,y0), this procedure approximates y(h) ≈ y0 +hf(t0,y0) and we thus set y1 = y0 +hf(t0,y0).
By the same token, we may advance from h to 2h by letting y2 = y1 + hf(t1,y1). In general, we obtain the
Euler method

yn+1 = yn + hf(tn,yn), n = 0, 1, . . . . (4.2)

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
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Convergence: Let t∗ > 0 be given. We say that a method, which for every h > 0 produces the solution
sequence yn = yn(h), n = 0, 1, . . . , bt∗/hc, converges if

lim
h→0

max
n=0,...,bt∗/hc

‖yn(h)− y(nh)‖ = 0,

where y(nh) is the evaluation at time t = nh of the exact solution of (4.1).

Theorem Suppose that f satisfies the Lipschitz condition: there exists λ ≥ 0 such that

‖f(t,v)− f(t,w)‖ ≤ λ‖v −w‖, t ∈ [0, t∗], v,w ∈ RN .

Then the Euler method (4.2) converges.

Proof. Let en = yn − y(tn), the error at step n, where 0 ≤ n ≤ t∗/h. Thus,

en+1 = yn+1 − y(tn+1) = [yn + hf(tn,yn)]− [y(tn) + hy′(tn) +O
(
h2
)
].

By the Taylor theorem, the O
(
h2
)

term can be bounded uniformly for all [0, t∗] in the underlying norm ‖ · ‖
by ch2, where c > 0 (Indeed if we take c = 1

2 maxt∈[0,t∗] ‖y′′(t)‖, then by Taylor’s formula with integral
remainder we get that for any t, h such that 0 ≤ t < t+ h ≤ t∗, ‖y(t+ h)− (y(t) + hy′(t))‖ ≤ ch2.) Thus,
using (4.1) and the triangle inequality,

‖en+1‖ ≤ ‖yn − y(tn)‖+ h‖f(tn,yn)− f(tn,y(tn))‖+ ch2

≤ ‖yn − y(tn)‖+ hλ‖yn − y(tn)‖+ ch2 = (1 + hλ)‖en‖+ ch2.

Consequently, by induction,

‖en+1‖ ≤ (1 + hλ)m‖en+1−m‖+ ch2
m−1∑
j=0

(1 + hλ)j , m = 0, 1, . . . , n+ 1.

In particular, letting m = n+ 1 and bearing in mind that e0 = 0, we have

‖en+1‖ ≤ ch2
n∑
j=0

(1 + hλ)j = ch2
(1 + hλ)n+1 − 1

(1 + hλ)− 1
≤ ch

λ
(1 + hλ)n+1.

For small h > 0 it is true that 0 < 1 + hλ ≤ ehλ. This and (n + 1)h ≤ t∗ imply that (1 + hλ)n+1 ≤ et
∗λ,

therefore ‖en‖ ≤ cet
∗λ

λ h
h→0−→ 0 uniformly for 0 ≤ nh ≤ t∗ and the theorem is true. 2
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