Mathematical Tripos Part IB: Lent 2020

Numerical Analysis — Lecture 6!

We look at another example of application of the Peano kernel theorem.

FEzample We approximate a derivative by a linear combination of function values, f/(0) ~ % (0)+2f(1)—
1f(2). Define L(f) := f'(0) — [-2 f(0) + 2f(1) — £ f(2)] and it is easy to check that L(f) =0 for f € Py[z].
(Verify by trying f(x) = 1,z,2? and using linearity of L.) Thus, for f € C3[0,2] we have

_1 /0 K(6)£"(6) do

with K(6) = L(z — (z — 0)2). For fixed 6, let g(z) := (z — 0)%. Then

K(0) = L(g) = ¢'(0) — [~39(0) +2g(1) — $9(2)]
=200—-0)y — [-23(0-0)3 +2(1-0)3 — 1(2—6)7]

20 — 262, 0<6<1,
=14 2(2-0)% 1<6<2,
0, else.
One can verify that fo |K(6)|d8 = 2. Consequently for any f € C3[0,2] we have

1 2 " 1 " 2 . ]‘ i
L)< g [ K@ @18 < 517 [ 1KO)]80 = 315

where || f"]|cc = max,efo,2) [f" ()]

4 Ordinary differential equations

We wish to approximate the exact solution of the ordinary differential equation (ODE)

y, = f<t7y>7 t=>0, (4'1)

where y € RY and the function f: R x RY — RY is sufficiently ‘nice’. (In principle, it is enough for f to
be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we henceforth assume that
f is analytic: in other words, we are always able to expand locally into Taylor series.) The equation (4.1) is
accompanied by the initial condition y(0) = y,.

Our purpose is to approximate ¥y, ., = y(tn4+1), n = 0,1,..., where t,, = mh and the time step h > 0 is
small, from y,,y1,...,y, and equation (4.1).

4.1 One-step methods

A one-step method is a map y,, .1 = ¢, (tn,y,), i.e. an algorithm which allows y,,,; to depend only on
tn, Y, h and the ODE (4.1).

The Euler method: We know y and its slope 4’ at ¢ = 0 and wish to approximate y at ¢ = h > 0.
The most obvious approach is to truncate y(h) = y(0) + hy'(0) + 2h%y”(0) + --- at the h? term. Since
Yy’ (0) = f(to,yy), this procedure approximates y(h) =~ y, + hf(to, y,) and we thus set y; = yo +hf(to, yo)-
By the same token, we may advance from h to 2h by letting y, = y; + hf(t1,y;). In general, we obtain the
Euler method

Yni1 = Yn +hf(tn,y,), n=01,.... (4.2)
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Convergence: Let t* > 0 be given. We say that a method, which for every h > 0 produces the solution
sequence y,, = y,,(h), n=0,1,..., |t*/h], converges if

L O

where y(nh) is the evaluation at time ¢t = nh of the exact solution of (4.1).
Theorem Suppose that f satisfies the Lipschitz condition: there exists A > 0 such that
If(tv) — ftw)]| < Ao —wl|,  t€[0,t], v,weR".
Then the Euler method (4.2) converges.
Proof. Let e, = y,, — y(tn), the error at step n, where 0 < n < ¢*/h. Thus,
eni1=Yni1 — Y(tnr1) = [Yn + 2f (tn, yn)] = [y (ta) + hy' () + O (17)].

By the Taylor theorem, the O (h?) term can be bounded uniformly for all [0,¢*] in the underlying norm | - ||
by ch?, where ¢ > 0 (Indeed if we take ¢ = §max;e(o¢« [|y”(t)], then by Taylor’s formula with integral
remainder we get that for any ¢, h such that 0 <t < t+h < t*, |ly(t + h) — (y(t) + hy'(t))| < ch?.) Thus,
using (4.1) and the triangle inequality,

lens1ll < 1yn — yta) || + B F(tn yn) = £t y(ta))|| + ch?
< yn — y(ta) || + PAY,, — y(ta)|| + ch? = (1 + hA)||e,]|| + ch?.

Consequently, by induction,

m—1
lensall < (14N [lentioml +ch® Y (1+hA/,  m=0,1,...,n+1.
§=0

In particular, letting m = n 4 1 and bearing in mind that ey = 0, we have

(14 AN —1

ch
< n+1.
Axhy—1 =3+

lentill < ch®Y (14 hA)Y = ch?
j=0

For small i > 0 it is true that 0 < 1+ A\ < e”*. This and (n + 1)h < ¢* imply that (1 + A"+ < et
cet™

therefore [le,|| < “5—h =00 uniformly for 0 < nh < t* and the theorem is true. O




