Mathematical Tripos Part IB: Lent 2020 Numerical Analysis – Lecture 9¹

Formally, $\boldsymbol{y}(t_{n+1}) = \boldsymbol{y}(t_n) + \int_{t_n}^{t_{n+1}} \boldsymbol{f}(t, \boldsymbol{y}(t)) dt$, and this can be 'approximated' by

$$\boldsymbol{y}_{n+1} = \boldsymbol{y}_n + h \sum_{l=1}^{\nu} b_l \boldsymbol{f}(t_n + c_l h, \boldsymbol{y}(t_n + c_l h)).$$
(4.11)

except that, of course, the vectors $\boldsymbol{y}(t_n + c_l h)$ are unknown! Runge-Kutta methods are a means of implementing (4.11) by replacing unknown values of \boldsymbol{y} by suitable linear combinations. The general form of a ν -stage explicit Runge-Kutta method (RK) is

$$\begin{aligned} & \boldsymbol{k}_{1} = \boldsymbol{f}(t_{n}, \boldsymbol{y}_{n}), \\ & \boldsymbol{k}_{2} = \boldsymbol{f}(t_{n} + c_{2}h, \boldsymbol{y}_{n} + hc_{2}\boldsymbol{k}_{1}), \\ & \boldsymbol{k}_{3} = \boldsymbol{f}(t_{n} + c_{3}h, \boldsymbol{y}_{n} + h(a_{3,1}\boldsymbol{k}_{1} + a_{3,2}\boldsymbol{k}_{2})), \qquad a_{3,1} + a_{3,2} = c_{3}, \\ & \vdots \\ & \boldsymbol{k}_{\nu} = \boldsymbol{f}\left(t_{n} + c_{\nu}h, \boldsymbol{y}_{n} + h\sum_{j=1}^{\nu-1} a_{\nu,j}\boldsymbol{k}_{j}\right), \qquad \sum_{j=1}^{\nu-1} a_{\nu,j} = c_{\nu}, \\ & \boldsymbol{h}_{n+1} = \boldsymbol{y}_{n} + h\sum_{l=1}^{\nu} b_{l}\boldsymbol{k}_{l}. \end{aligned}$$

The choice of the RK coefficients $a_{l,j}$ is motivated at the first instance by order considerations.

Example Set $\nu = 2$. We have $\boldsymbol{k}_1 = \boldsymbol{f}(t_n, \boldsymbol{y}_n)$ and, Taylor-expanding about (t_n, \boldsymbol{y}_n) ,

 \boldsymbol{y}

$$\begin{aligned} \boldsymbol{k}_2 &= \boldsymbol{f}(t_n + c_2 h, \boldsymbol{y}_n + c_2 h \boldsymbol{f}(t_n, \boldsymbol{y}_n)) \\ &= \boldsymbol{f}(t_n, \boldsymbol{y}_n) + h c_2 \left[\frac{\partial \boldsymbol{f}(t_n, \boldsymbol{y}_n)}{\partial t} + \frac{\partial \boldsymbol{f}(t_n, \boldsymbol{y}_n)}{\partial \boldsymbol{y}} \boldsymbol{f}(t_n, \boldsymbol{y}_n) \right] + \mathcal{O}(h^2) \,. \end{aligned}$$

But

$$y' = f(t, y) \qquad \Rightarrow \qquad y'' = \frac{\partial f(t, y)}{\partial t} + \frac{\partial f(t, y)}{\partial y} f(t, y)$$

Therefore, substituting the exact solution $\boldsymbol{y}_n = \boldsymbol{y}(t_n)$, we obtain $\boldsymbol{k}_1 = \boldsymbol{y}'(t_n)$ and $\boldsymbol{k}_2 = \boldsymbol{y}'(t_n) + hc_2 \boldsymbol{y}''(t_n) + \mathcal{O}(h^2)$. Consequently, the *local* error is

$$\boldsymbol{y}(t_{n+1}) - (\boldsymbol{y}(t_n) + hb_1\boldsymbol{k}_1 + hb_2\boldsymbol{k}_2) = [\boldsymbol{y}(t_n) + h\boldsymbol{y}'(t_n) + \frac{1}{2}h^2\boldsymbol{y}''(t_n) + \mathcal{O}(h^3)] - [\boldsymbol{y}(t_n) + h(b_1 + b_2)\boldsymbol{y}'(t_n) + h^2b_2c_2\boldsymbol{y}''(t_n) + \mathcal{O}(h^3)].$$

We deduce that the RK method is of order 2 if $b_1 + b_2 = 1$ and $b_2c_2 = \frac{1}{2}$. We can demonstrate that no such method may be of order ≥ 3 . To show this consider the ODE y' = y with y(0) = 1 whose solution is $y(t) = e^t$. For this ODE we can write the local error explicitly: indeed we have $k_1 = f(t_n, y(t_n)) = e^{t_n}$ and $k_2 = f(t_n + c_2h, y(t_n) + c_2hk_1) = y(t_n) + c_2hk_1 = e^{t_n}(1 + c_2h)$. Then the local error is

$$y(t_{n+1}) - (y(t_n) + hb_1k_1 + hb_2k_2) = e^{t_{n+1}} - e^{t_n} - e^{t_n}(hb_1 + hb_2 + h^2b_2c_2)$$

= $e^{t_n}(e^h - 1 - h(b_1 + b_2) - h^2(b_2c_2))$
= $e^{t_n}\left(h(1 - b_1 - b_2) + h^2(1/2 - b_2c_2) + \frac{h^3}{6} + \mathcal{O}(h^4)\right)$

¹Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

We see that there is no choice of b_1, b_2, c_2, c_2 that will make the term h^3 vanish, and so the method cannot have order ≥ 3 .

General RK methods A general ν -stage Runge-Kutta method is

$$\boldsymbol{k}_{l} = \boldsymbol{f}\left(t_{n} + c_{l}h, \boldsymbol{y}_{n} + h\sum_{j=1}^{\nu} a_{l,j}\boldsymbol{k}_{j}\right) \quad \text{where} \quad \sum_{j=1}^{\nu} a_{l,j} = c_{l}, \qquad l = 1, 2, \dots, \nu,$$
$$\boldsymbol{y}_{n+1} = \boldsymbol{y}_{n} + h\sum_{l=1}^{\nu} b_{l}\boldsymbol{k}_{l}.$$

Obviously, $a_{l,j} = 0$ for all $l \leq j$ yields the standard *explicit* RK. Otherwise, an RK method is said to be *implicit*.

4.4 Stiff equations

Consider the linear scalar system

$$\begin{cases} y' = \lambda y \\ y(0) = 1 \end{cases}$$

where $\lambda < 0$. The solution is $y(t) = e^{\lambda t}$ which decays to 0 as $t \to \infty$. If we solve our ODE using a numerical method, we would like our sequence (y_n) to also decay to zero. For example with Euler's method we get $y_{n+1} = y_n + h\lambda y_n = (1 + h\lambda)y_n$ whose solution is $y_n = (1 + h\lambda)^n$. Thus the sequence y_n converges to 0 as $n \to \infty$ provided that $|1 + h\lambda| < 1$, i.e., $h < 2/|\lambda|$. For large λ this can be a severe restriction on h: for example for $\lambda = -1000$ this implies h < 2/1000 = 0.002.

Consider now the implicit Euler method. Here we have $y_{n+1} = y_n + h\lambda y_{n+1}$ which gives $y_{n+1} = (1-h\lambda)^{-1}y_n$ and so $y_n = (1-h\lambda)^{-n}$ which converges to 0 for any choice of h > 0 (we assumed $\lambda < 0$)!

Definition Suppose that a numerical method, applied to $y' = \lambda y$, y(0) = 1, with constant h, produces the solution sequence $\{y_n\}_{n \in \mathbb{Z}^+}$. We call the set

$$\mathcal{D} = \{h\lambda \in \mathbb{C} : \lim_{n \to \infty} y_n = 0\}$$

the *linear stability domain* of the method. Noting that the set of $\lambda \in \mathbb{C}$ for which $y(t) \xrightarrow{t \to \infty} 0$ is the left half-plane $\mathbb{C}^- = \{z \in \mathbb{C} : \text{Re } z < 0\}$, we say that the method is *A*-stable if $\mathbb{C}^- \subseteq \mathcal{D}$.

Example We have already seen that for the explicit Euler's method $y_n \to 0$ iff $|1 + h\lambda| < 1$, therefore $\mathcal{D} = \{z \in \mathbb{C} : |1 + z| < 1\}$ and the explicit Euler method is not A-stable. Moreover, solving $y' = \lambda y$ with the implicit Euler method we have seen that $y_n \to 0$ iff $|1 - h\lambda|^{-1} < 1$, therefore the linear stability domain is $\mathcal{D} = \{z \in \mathbb{C} : |1 - z| > 1\}$, hence the implicit Euler method is A-stable.