
Mathematical Tripos Part IB: Lent 2020

Numerical Analysis – Lecture 121

If the ODE is stiff, we might prefer a Newton–Raphson method. Let ψ(y) = y − σshf(tn+s,y) − v so
the equation we want to solve is ψ(yn+s) = 0. The Newton-Raphson method corresponds to the following
iteration rule:

y
[j+1]
n+s = y

[j]
n+s −

(
∂ψ

∂y
(y

[j]
n+s)

)−1
ψ(y

[j]
n+s). (4.16)

The justification of the above is as follows: suppose that y
[j]
n+s is an approximation to the solution. We

linearise ψ locally around y
[j]
n+s to get

ψ(yn+s) ≈ ψ(y
[j]
n+s) +

∂ψ

∂y
(y

[j]
n+s)(yn+s − y

[j]
n+s).

Setting the right-hand side to zero we get (4.16).

The snag is that repeatedly evaluating and inverting (i.e. LU-factorizing) the Jacobian matrix
∂ψ
∂y in every

iteration is very expensive. The remedy is to implement the modified Newton–Raphson method , namely

y
[j+1]
n+s = y

[j]
n+s −

(
∂ψ

∂y
(y

[0]
n+s)

)−1
ψ(y

[j]
n+s). (4.17)

Thus, the Jacobian need be evaluated only once a step.

Important observation for future use: Implementation of (4.17) requires repeated solution of linear algebraic
systems with the same matrix. We will soon study LU factorization of matrices, and there this remark will
be appreciated as important and lead to substantial savings. For stiff equations it is much cheaper to solve
nonlinear algebraic equations with (4.17) than using a minute step size with a ‘bad’ (e.g., explicit multistep
or explicit RK) method.

5 Numerical linear algebra

5.1 LU factorization and its generalizations

Let A be a real n× n matrix. We say that the n× n matrices L and U are an LU factorization of A if (1)
L is unit lower triangular, i.e., Li,j = 0 for i < j and Lii = 1 for all i, (2) U is upper triangular, Ui,j = 0,
i > j; and (3) A = LU . Therefore the factorization takes the form  =


@

@
@

×
@

@
@

 .
Application 1 Calculation of a determinant: detA = (detL)(detU) = (

∏n
k=1 Lk,k) · (

∏n
k=1 Uk,k). This is

much faster than the using the formula

detA =
∑
σ

sign(σ)A1,σ(1) . . . An,σ(n) (5.1)

where the summation is over all permutations σ of {1, . . . , n}. The number of terms in the sum is n!. For a
matrix of size n = 30, evaluating (5.1) would take more than 1010 years, assuming a 109 flop/sec. computer
(flop = floating point operation)!

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

1

Application 2 Testing for nonsingularity: A = LU is nonsingular iff all the diagonal elements of L and U
are nonzero.

Application 3 Solution of linear systems: Let A = LU and suppose we wish to solve Ax = b. This is the
same as L(Ux) = b, which we decompose into Ly = b, Ux = y. Both latter systems are triangular and can
be calculated easily. Thus, L1,1y1 = b1 gives y1, next L2,1y1 +L2,2y2 = b2 yields y2 etc. Having found y, we
solve for x in reverse order: Un,nxn = yn gives xn, Un−1,n−1xn−1+Un−1,nxn = yn−1 produces xn−1 and so on.
This requires O(n2) computational operations (usually we only bother to count multiplications/divisions).

Application 4 The inverse of A: It is straightforward to devise a direct way of calculating the inverse of
triangular matrices, subsequently forming A−1 = U−1L−1.

The calculation of LU factorization We denote the columns of L by l1, l2, . . . , ln and the rows of U by
u>1 ,u

>
2 , . . . ,u

>
n . Hence

A = LU = [l1 l2 · · · ln]


u>1
u>2
...
u>n

 =

n∑
k=1

lku
>
k . (5.2)

Since the first k−1 components of lk and uk are all zero, each rank-one matrix lku
>
k has zeros in its first k−1

rows and columns. We begin our calculation by extracting l1 and u>1 from A, and then proceed similarly to
extract l2 and u>2 , etc.

First we note that since the leading k− 1 elements of lk and uk are zero for k ≥ 2, it follows from (5.2) that
u>1 is the first row of A and l1 is the first column of A, divided by A1,1 (so that L1,1 = 1).

Next, having found l1 and u1, we form the matrix A1 = A − l1u>1 =
∑n
k=2 lku

>
k . The first row & column

of A1 are zero and it follows that u>2 is the second row of A1, while l2 is its second column, scaled so that
L2,2 = 1.

We can thus summarize the LU decomposition algorithm as follows: Set A0 := A. For all
k = 1, 2, . . . , n set u>k to the kth row of Ak−1 and lk to the kth column of Ak−1, scaled so that Lk,k = 1.
Set Ak := Ak−1 − lku>k and increment k.

At each step k, the dominant cost is to form lku
>
k . Since the first k − 1 components of lk and uk are

zero the cost of forming this rank-one matrix is (n − k + 1)2. Thus the total cost of the algorithm is∑n
k=1(n− k + 1)2 =

∑n
j=1 j

2 = O
(
n3
)
.

Relation to Gaussian elimination In Gaussian elimination, we perform a series of elementary row op-
erations on A to transform it into an upper triangular matrix. Each elementary row operation consists in
adding a multiple of the k’th row to the j’th row (j > k). One can easily show that such operations can be
represented using unit lower triangular matrices. Thus Gaussian elimination can be written concisely as:

LnLn−1 . . . L1A = U

where each Lk is unit lower triangular and U is upper triangular. This gives A = LU where L = L−11 . . . L−1n
is unit lower triangular. In the algorithm described above, the matrix Ak is the matrix obtained after k
steps of Gaussian elimination, except for the first k − 1 rows and columns which are zero in Ak. The only
difference between Gaussian elimination and LU is that Gaussian elimination is usually applied to a linear
system Ax = b and the lower triangular matrices are not stored. One advantage of using LU decomposition
is that it can be reused for different right-hand sides: in Gaussian elimination the solution for each new b
would require O(n3) computational operations, whereas with LU factorization O(n3) operations are required
for the initial factorization, but then the solution for each new b only requires just O(n2) (forward/backward
substitution).

2

