Mathematical Tripos Part IB: Lent 2020

Numerical Analysis — Lecture 15!

The Gram—Schmidt algorithm Assume that m > n and that the columns of A € R™*" are linearly
independent. We will see how to construct a reduced QR factorization of A, i.e., @ € R™*™ having orthonormal
columns, R € R™*™ upper-triangular and A = QR: in other words,

¢
ZRqu:ag, £=1,2,...,n, where A=la1 a2 - ay,]. (5.2)
k=1

Equation (5.2) for ¢ = 1 tells us that we must have g; = a1/||a1| and R11 = ||@1|. Next we form the vector
b=as—{(q;,a2)q,. It is orthogonal to g, since (q, a2 —{(qy,a2)q,) = {(qy, a2) — (g1, a2){q;,q;) = 0. Since the
columns of A are assumed linearly independent, b # 0 and we set g, = b/||b||, hence g, and g, are orthonormal.
Moreover,

(g1, a2)q; + [|bllgs = (g1, a2)q; + b= as,

hence, to obey (5.2) for £ =2, we let R1 2 = (q,,a2), R22 = ||b]|.

More generally we get the following classical Gram-Schmidt algorithm to compute a QR factorization: Set
. . . j—1

g, = a1/||a1|| and Ry1 = |ja1]|. For j =2,...,n: Set R;; = (g;,a;) for i < j—1, and b; = a; — > 7_, Rijq;.

Set q; = b;/||b;|| and R;; = [|b;]|.

The total cost of the classical Gram—Schmidt algorithm is O(an), since at each iteration j a total of O(my)
operations are performed.

The disadvantage of the classical Gram—-Schmidt is its ¢ll-conditioning: using finite arithmetic, small imprecisions
in the calculation of inner products spread rapidly, leading to effective loss of orthogonality. Errors accumulate
fast and the computed off-diagonal elements of QT Q may become large.

The Gram-Schmidt algorithm operates by performing “triangular orthogonalization” on A: triangular operations
are applied to A to produce the orthonormal system q;,...,q,. We are now going to see two algorithms
for QR factorization that are based on “orthogonal triangularization”: we will repeatedly apply orthogonal
transformations to A to put it into triangular form.

Orthogonal transformations Given real m x n matrix Ay = A, we seek a sequence Q1,s,...,Qr of m xm
orthogonal matrices such that the matrix A; := €;A;_1 has more zero elements below the main diagonal than
A;_q for i = 1,2,...,k and so that the manner of insertion of such zeros is such that Ay is upper triangular.
We then let R = Ay, therefore QpQp 1+ QA = Rand Q = (%1217 = (%Qq - Q)T =
Q- Q,;r Hence A = QR, where @ is orthogonal and R upper triangular.

Givens rotations Recall that the matrix associated to clockwise rotation in R? by angle 6 is [f‘;isn% sing ] An
m X m Givens rotation matrix €2 is an orthogonal matrix specified by two integers 1 < p < g < m and an angle
0 € [—m, ], which coincides with the identity matrix except for the 2 x 2 submatrix associated to rows/columns
{p, ¢} which correspond to a 2 x 2 rotation matrix. Specifically, we use the notation QP4 where 1 <p<g<m
for a matrix such that

oledl = Qldl — cosp, QP =sing,  QlPd = —ging

for some @ € [—m, w]. The remaining elements of QP4 are those of an identity matrix. For example,

cosf) sinf 0 O 1 0 0 0
_ 2 _ | — sinf cosf 0 O 2,4] _ 0 cosf® 0 sinf
m=4 = Q 0 o 10| % 0o 0 1 0
0 0 0 1 0 —sinf 0 cos6

Geometrically, such matrices correspond to a rotation in the two-dimensional coordinate subspace spanned by
{ep, €4}, where e; is the vector with zeros everywhere except for a 1 in position i.

LCorrections and suggestions to these notes should be emailed to h.fawzi@damtp.can.ac.uk.



Theorem Let A be an m x n matrix. Then, for every 1 < p < ¢ < m, i € {p,q} and 1 < j < n, there exists
0 € [—m, w] such that (Q[pv‘ﬂA)m = 0. Moreover, all the rows of QP9 A, except for the pth and the gth, are the
same as the corresponding rows of A, whereas the pth and the gth rows of QP4 A are linear combinations of
the pth and ¢th rows of A.

Proof. Let i =q. If A, ; = A, ; = 0 then any 6 will do, otherwise we let

cos6 = Ay /\JAD ;+ AL sinb = Ay [\ JAT 4+ AL

Hence
QP9IA) = —(sin@) A, + (cosAgp, k=1,2,....n = QPd A, =o.

Likewise, when i = p we let cos§ 1= Ay ;/\ /A2 ; 4+ AZ 5, sin6 := —A, ; /| /A2 + A2 ..
The last two statements of the theorem are an immediate consequence of the construction of QP4 O

An example: Suppose that A is 3 x 3. We can force zeros underneath the main diagonal as follows.

X X X
1 First pick Q12 so that (Q12A)y; =0 = QA= 0 x x
X X X

2 Next pick Q3] so that (Q131Q124)3 ; = 0. Multiplication by Q13 doesn’t alter the second row, hence

X X X
(QI3IQM2A A), | remains zero = QIIQI2AA =1 0 x x
0 x x

3 Finally, pick Q23] so that (Q221Q1-31Q12 )5 5 = 0. Since both second and third row of Q1310121 A have
a leading zero, (9[2’3]9[1’3]9[1’2]14)271 = (9[2’3]9[1’ ]9[1’2]A>371 = 0. It follows that Q23QL3IQM21 4 is upper
triangular. Therefore

X X X
R=0B3ot3glda=1 0 x x |, Q= (9[2,319[1,3]9[1,2])?
0 X

The Givens algorithm Given m x n matrix A: For each j from 1 to n and ¢ from j + 1 to m, replace A by
QU1 A where Q7% is chosen to annihilate the (4, 7) entry.

This algorithm transforms A into an upper triangular matrix by a sequence of orthogonal transformations.
The final orthogonal matrix @ however is not computed explicitly in this algorithm. If we want to compute @
explicitly, we commence by letting © be the m x m identity matrix and, each time A is premultiplied by QUi
we also premultiply € by the same rotation. Hence the final € is the product of all the rotations, in correct
order, and we let Q = QT. Note however, in most applications we don’t need Q but, instead, just the action of
Q" on a given vector (recall: solution of linear systems!). This can be accomplished by multiplying the given
vector, e.g., the right-hand side b if we are solving a linear system, by successive rotations.

The cost For each j < 4, the cost of computing QU4 A is O(n) since we just have to replace the j'th and i’th
rows of A by their appropriate linear combinations. This has to be done less than mn times (the number of
pairs (j,4)) and so the total cost is O(mn?).



