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Numerical Analysis – Lecture 161

Householder reflections Let u ∈ Rm \ {0}. The m×m matrix I − 2uu
>

‖u‖2 is called a Householder reflection.

Each such matrix is symmetric and orthogonal, since(
I − 2

uu>

‖u‖2

)>(
I − 2

uu>

‖u‖2

)
=

(
I − 2

uu>

‖u‖2

)2

= I − 4
uu>

‖u‖2
+ 4

u(u>u)u>

‖u‖4
= I.

Householder reflections offer an alternative to Given rotations in the calculation of a QR factorization.

Householder algorithm Our goal is to multiply an m× n matrix A by a sequence of Householder reflections
so that each product induces zeros under the diagonal in an entire column.

At the first step we seek a reflection that transforms the first column a1 of A to a multiple of e1. Since the
Householder reflection is orthogonal (it preserves Euclidean norm) the latter has to be ±‖a1‖e1 where we are
free to choose the sign. The Householder reflection that does this operation is given by the choice of vector
u = a1 − (±‖a1‖e1). For numerical stability the sign is usually chosen to be −sign(A11).

More generally, at the beginning of the k’th step of the algorithm, the columns 1 to k − 1 have been processed
and have zeros under their diagonal element. Our goal is to find a Householder reflection that will induce zeros
under the diagonal element of the k’th column. To do so we use a block orthogonal matrix [ I 0

0 H ] where I is a
(k − 1)× (k − 1) identity matrix, and H is a (m− k + 1)× (m− k + 1) Householder reflection associated with
the choice ũ = ãk + sign(Akk)‖ãk‖ẽ1, where ãk is the vector of size m − k + 1 consisting of the entries of A
under the diagonal in the k’th column, and ẽ1 is the vector of size m− k + 1 with a 1 in the first position and
zero elsewhere.

To summarize it is convenient to use the (Matlab-style) notation where Ak:m,j indicates the vector of size
m− k + 1 obtained from rows k, . . . ,m of column j of A. Then the algorithm can be written as follows:

Given A ∈ Rm×n with m ≥ n. For k = 1 to n:

• Let ãk = Ak:m,k ∈ Rm−k+1

• Let ẽ1 be the vector of size m− k + 1 with a 1 in the first position and zero elsewhere.

• Let ũ = ãk + sign(Akk)‖ãk‖ẽ1
• For each column j = k, . . . , n update Ak:m,j = Ak:m,j − 2(ũTAk:m,j)ũ/‖ũ‖2.

Example (k = 3, assuming the first two columns have already been processed)

A =


2 4 7
0 3 −1
0 0 2
0 0 1
0 0 −2

 → ã3 =

 2
1
−2

 , ũ =

 5
1
−2

 →


2 4 7
0 3 −1
0 0 −3
0 0 0
0 0 0

 .

Calculation of Q Like for the case of Givens algorithm, the matrix Q is not explicitly formed. To form Q

explicitly we start with Ω = I initially and, for each step we replace Ω, by

(
I − 2

uu>

‖u‖2

)
Ω = Ω− 2

‖u‖2
u(u>Ω)

where u =
[

0
ũ

]
is obtained from ũ by adding k − 1 zeros above it2. However, if we require just the vector c =

Q>b, say, rather than the matrix Q, then we set initially c = b and in each stage replace c by

(
I − 2

uu>

‖u‖2

)
c =

c− 2
u>c

‖u‖2
u.

1Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
2Indeed, note that the reflection I − 2uu>/‖u‖2 is the same as the block orthogonal matrix

[
I 0
0 H

]
where H is the Householder

reflection corresponding to ũ.
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Givens or Householder? If A is dense, it is in general more convenient to use Householder reflections. Givens
rotations come into their own, however, when A has many leading zeros in its rows. E.g., if an n× n matrix A
consists of zeros underneath the first subdiagonal, they can be ‘rotated away’ in just n− 1 Givens rotations, at
the cost of O

(
n2
)

operations!

5.3 Linear least squares

Statement of the problem Suppose that an m × n matrix A and a vector b ∈ Rm are given. The equation
Ax = b, where x ∈ Rn is unknown, has in general no solution (if m > n) or an infinity of solutions (if
m < n). Problems of this form occur frequently when we collect m observations (which, typically, are prone to
measurement error) and wish to exploit them to form an n-variable linear model, where n� m. (In statistics,
this is known as linear regression.) Bearing in mind the likely presence of errors in A and b, we seek x ∈ Rn

that minimises the Euclidean length ‖Ax− b‖. This is the least squares problem.

Theorem x ∈ Rn is a solution of the least squares problem iff A>(Ax− b) = 0.
Proof. If x is a solution then it minimises

f(x) := ‖Ax− b‖2 = 〈Ax− b, Ax− b〉 = x>A>Ax− 2x>A>b + b>b.

Hence ∇f(x) = 0. But 1
2∇f(x) = A>Ax−A>b, hence A>(Ax− b) = 0.

Conversely, suppose that A>(Ax− b) = 0 and let u ∈ Rn. Hence, letting y = u− x,

‖Au− b‖2 = 〈Ax + Ay − b, Ax + Ay − b〉 = 〈Ax− b, Ax− b〉+ 2y>A>(Ax− b)

+ 〈Ay, Ay〉 = ‖Ax− b‖2 + ‖Ay‖2 ≥ ‖Ax− b‖2

and x is indeed optimal. 2

Corollary Optimality of x ⇔ the vector Ax− b is orthogonal to all columns of A.

Normal equations One way of finding optimal x is by solving the n × n linear system A>Ax = A>b; this
is the method of normal equations. This approach is popular in many applications. However, there are three
disadvantages. Firstly, A>A might be singular, secondly sparse A might be replaced by a dense A>A and,
finally, forming A>A might lead to loss of accuracy. Thus, suppose that our computer works in the IEEE
arithmetic standard (≈ 15 significant digits) and let

A =

[
108 −108

1 1

]
=⇒ A>A =

[
1016 + 1 −1016 + 1
−1016 + 1 1016 + 1

]
≈ 1016

[
1 −1
−1 1

]
.

Given b = [0, 2]> the solution of Ax = b is [1, 1]>, as can be easily found by Gaussian elimination. However,
our computer ‘believes’ that A>A is singular!

QR and least squares
Let A be an m × n matrix with m ≥ n, and let A = QR be a reduced QR factorization where Q is m × n has
orthonormal columns and R is n×n upper triangular. We know that x is a solution to the least squares problem
iff Ax− b is orthogonal to all columns of A. Since the columns of Q span the same space as the columns of A
this is equivalent to saying that Q>(Ax−b) = 0. Since the columns of Q form an orthonormal system we have3

Q>Q = In, and so this leads to the equation Rx = Q>b. The latter can be solved using backsubstitution.

3Note however that QQ> is not equal to the identity matrix! (Q is a rectangular matrix here)
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