Mathematical Tripos Part IB: Lent 2020

Numerical Analysis — Lecture 16!

Householder reflections Let u € R™ \ {0}. The m x m matrix I — 2% is called a Householder reflection.
Each such matrix is symmetric and orthogonal, since

uu—'—>—r < uuT> ( uuT>2 uu u(uTu)u’
I1-2 I1-2 =(I-2 =1—-4 +4 =1.
( [[ul[? [ [[u]? [[u]? [

Householder reflections offer an alternative to Given rotations in the calculation of a QR factorization.

Householder algorithm Our goal is to multiply an m X n matrix A by a sequence of Householder reflections
so that each product induces zeros under the diagonal in an entire column.

At the first step we seek a reflection that transforms the first column a; of A to a multiple of e;. Since the
Householder reflection is orthogonal (it preserves Euclidean norm) the latter has to be +|a;||e; where we are
free to choose the sign. The Householder reflection that does this operation is given by the choice of vector
u = a; — (£||a;]|e1). For numerical stability the sign is usually chosen to be —sign(Ajy).

More generally, at the beginning of the k’th step of the algorithm, the columns 1 to £ — 1 have been processed
and have zeros under their diagonal element. Our goal is to find a Householder reflection that will induce zeros
under the diagonal element of the k’th column. To do so we use a block orthogonal matrix [§ %] where I is a
(k—1) x (k—1) identity matrix, and H is a (m — k + 1) x (m — k + 1) Householder reflection associated with
the choice @ = @y, + sign(Agx)||@x||€1, where ay is the vector of size m — k + 1 consisting of the entries of A
under the diagonal in the k’th column, and €; is the vector of size m — k + 1 with a 1 in the first position and

zero elsewhere.

To summarize it is convenient to use the (Matlab-style) notation where Ag.., ; indicates the vector of size
m — k + 1 obtained from rows k, ..., m of column j of A. Then the algorithm can be written as follows:

Given A € R™*™ with m > n. For k =1 to n:

Let ar, = Agim i € RMkHL

Let €1 be the vector of size m — k 4+ 1 with a 1 in the first position and zero elsewhere.

o Let w = ay, + sign(Agk)||arl €1

e For ecach column j =k, ..., n update Ag.m,j = Akim,j — Q(ﬁTAk,m,j)ﬂ/HﬁHQ.

Example (k = 3, assuming the first two columns have already been processed)

2 4 7 2 4 7
0 3 -1 2 ) 0 3 -1
A=10 0 2 - a3=|1], u=|1 — 00 -3
0 0 1 -2 -2 00 O
00 — 00 O

Calculation of ) Like for the case of Givens algorithm, the matrix @ is not explicitly formed. To form @

2

explicitly we start with €2 = I initially and, for each step we replace (2, by (I — 2r|m”2> N=0Q- Wu(uTQ)
u u

0

where u = [,&] is obtained from @ by adding k — 1 zeros above it2. However, if we require just the vector ¢ =

-
uu
QT b, say, rather than the matrix @, then we set initially ¢ = b and in each stage replace ¢ by (I — 2||2) c=
u
u'c

c—2 u.
(]2

LCorrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.
2Indeed, note that the reflection I — 2uu’ /|lu||? is the same as the block orthogonal matrix [& 5] where H is the Householder
reflection corresponding to .



Givens or Householder? If A is dense, it is in general more convenient to use Householder reflections. Givens
rotations come into their own, however, when A has many leading zeros in its rows. E.g., if an n x n matrix A
consists of zeros underneath the first subdiagonal, they can be ‘rotated away’ in just n — 1 Givens rotations, at
the cost of O(n?) operations!

5.3 Linear least squares

Statement of the problem Suppose that an m x n matrix A and a vector b € R™ are given. The equation
Az = b, where * € R" is unknown, has in general no solution (if m > n) or an infinity of solutions (if
m < n). Problems of this form occur frequently when we collect m observations (which, typically, are prone to
measurement error) and wish to exploit them to form an n-variable linear model, where n < m. (In statistics,
this is known as linear regression.) Bearing in mind the likely presence of errors in A and b, we seek x € R"
that minimises the Euclidean length ||Ax — b||. This is the least squares problem.

Theorem z € R" is a solution of the least squares problem iff AT (Ax —b) = 0.
Proof. If = is a solution then it minimises

f(x):= Az — b||> = (Ax — b, Ax —b) =x AT Az —2x " ATb+b"b.

Hence Vf(xz) = 0. But 3V f(xz) = AT Az — ATb, hence AT (Az — b) = 0.
Conversely, suppose that AT (Ax —b) = 0 and let u € R™. Hence, letting y = u — x,

|Au — b||? = (Ax + Ay — b, Az + Ay — b) = (Ax — b, Ax — b) + 2y AT (Ax — b)
+(Ay, Ay) = || Az — b||* + | Ay|* > || Az — b]?

and « is indeed optimal. o
Corollary Optimality of & < the vector Ax — b is orthogonal to all columns of A.

Normal equations One way of finding optimal z is by solving the n x n linear system AT Az = ATb; this
is the method of normal equations. This approach is popular in many applications. However, there are three
disadvantages. Firstly, AT A might be singular, secondly sparse A might be replaced by a dense AT A and,
finally, forming AT A might lead to loss of accuracy. Thus, suppose that our computer works in the IEEE
arithmetic standard (= 15 significant digits) and let

108 —108 T 1016 +1 —10' +1 16 1 -1
A‘{ 11 ] = A= geegr a0 RO 0 1)

Given b = [0,2]" the solution of Az = b is [1,1]7, as can be easily found by Gaussian elimination. However,
our computer ‘believes’ that AT A is singular!

QR and least squares

Let A be an m x n matrix with m > n, and let A = QR be a reduced QR factorization where @ is m x n has
orthonormal columns and R is n X n upper triangular. We know that x is a solution to the least squares problem
iff Az — b is orthogonal to all columns of A. Since the columns of @ span the same space as the columns of A
this is equivalent to saying that QT (Az —b) = 0. Since the columns of @ form an orthonormal system we have®
QTQ = I,,, and so this leads to the equation Rz = Q"b. The latter can be solved using backsubstitution.

3Note however that QQ T is not equal to the identity matrix! (@ is a rectangular matrix here)



