Mathematical Tripos Part IB: Lent 2020 Numerical Analysis – Lecture 16¹

Householder reflections Let $u \in \mathbb{R}^m \setminus \{0\}$. The $m \times m$ matrix $I - 2\frac{uu^{\top}}{\|u\|^2}$ is called a *Householder reflection*. Each such matrix is symmetric and orthogonal, since

$$\left(I - 2\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^2}\right)^{\top} \left(I - 2\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^2}\right) = \left(I - 2\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^2}\right)^2 = I - 4\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^2} + 4\frac{\boldsymbol{u}(\boldsymbol{u}^{\top}\boldsymbol{u})\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^4} = I.$$

Householder reflections offer an alternative to Given rotations in the calculation of a QR factorization.

Householder algorithm Our goal is to multiply an $m \times n$ matrix A by a sequence of Householder reflections so that each product induces zeros under the diagonal in an entire column.

At the first step we seek a reflection that transforms the first column a_1 of A to a multiple of e_1 . Since the Householder reflection is orthogonal (it preserves Euclidean norm) the latter has to be $\pm ||a_1||e_1$ where we are free to choose the sign. The Householder reflection that does this operation is given by the choice of vector $u = a_1 - (\pm ||a_1||e_1)$. For numerical stability the sign is usually chosen to be $-\text{sign}(A_{11})$.

More generally, at the beginning of the k'th step of the algorithm, the columns 1 to k-1 have been processed and have zeros under their diagonal element. Our goal is to find a Householder reflection that will induce zeros under the diagonal element of the k'th column. To do so we use a block orthogonal matrix $\begin{bmatrix} I & 0 \\ 0 & H \end{bmatrix}$ where I is a $(k-1) \times (k-1)$ identity matrix, and H is a $(m-k+1) \times (m-k+1)$ Householder reflection associated with the choice $\tilde{\boldsymbol{u}} = \tilde{\boldsymbol{a}}_k + \operatorname{sign}(A_{kk}) \| \tilde{\boldsymbol{a}}_k \| \tilde{\boldsymbol{e}}_1$, where $\tilde{\boldsymbol{a}}_k$ is the vector of size m-k+1 consisting of the entries of A under the diagonal in the k'th column, and $\tilde{\boldsymbol{e}}_1$ is the vector of size m-k+1 with a 1 in the first position and zero elsewhere.

To summarize it is convenient to use the (Matlab-style) notation where $A_{k:m,j}$ indicates the vector of size m - k + 1 obtained from rows k, \ldots, m of column j of A. Then the algorithm can be written as follows:

Given $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. For k = 1 to n:

- Let $\tilde{\boldsymbol{a}}_k = A_{k:m,k} \in \mathbb{R}^{m-k+1}$
- Let \tilde{e}_1 be the vector of size m k + 1 with a 1 in the first position and zero elsewhere.
- Let $\tilde{\boldsymbol{u}} = \tilde{\boldsymbol{a}}_k + \operatorname{sign}(A_{kk}) \| \tilde{\boldsymbol{a}}_k \| \tilde{\boldsymbol{e}}_1$
- For each column $j = k, \ldots, n$ update $A_{k:m,j} = A_{k:m,j} 2(\tilde{\boldsymbol{u}}^T A_{k:m,j}) \tilde{\boldsymbol{u}} / \|\tilde{\boldsymbol{u}}\|^2$.

Example $(k = 3, \text{ assuming the first two columns have already been processed)$

	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	$\frac{4}{3}$	7 -1		Γ2	1	[5]		$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	$\frac{4}{3}$	7 -1	
A =	0 0 0	0 0 0		\rightarrow	$\tilde{\boldsymbol{a}}_3 = \begin{bmatrix} 2\\ 1\\ -2 \end{bmatrix}$	$\left[\begin{array}{c} & & \\ & & \\ & & \end{array} ight], \;\; ilde{m{u}} =$	$\begin{bmatrix} 0\\1\\-2\end{bmatrix}$	\rightarrow	$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	0 0 0	$7 \\ -1 \\ -3 \\ 0 \\ 0 \end{bmatrix}$	

Calculation of Q Like for the case of Givens algorithm, the matrix Q is not explicitly formed. To form Q explicitly we start with $\Omega = I$ initially and, for each step we replace Ω , by $\left(I - 2\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^2}\right)\Omega = \Omega - \frac{2}{\|\boldsymbol{u}\|^2}\boldsymbol{u}(\boldsymbol{u}^{\top}\Omega)$ where $\boldsymbol{u} = \begin{bmatrix} \boldsymbol{0}\\ \boldsymbol{u} \end{bmatrix}$ is obtained from $\boldsymbol{\tilde{u}}$ by adding k-1 zeros above it². However, if we require just the vector $\boldsymbol{c} = Q^{\top}\boldsymbol{b}$, say, rather than the matrix Q, then we set initially $\boldsymbol{c} = \boldsymbol{b}$ and in each stage replace \boldsymbol{c} by $\left(I - 2\frac{\boldsymbol{u}\boldsymbol{u}^{\top}}{\|\boldsymbol{u}\|^2}\right)\boldsymbol{c} = \boldsymbol{c} - 2\frac{\boldsymbol{u}^{\top}\boldsymbol{c}}{\|\boldsymbol{u}\|^2}\boldsymbol{u}$.

¹Corrections and suggestions to these notes should be emailed to h.fawzi@damtp.cam.ac.uk.

²Indeed, note that the reflection $I - 2\boldsymbol{u}\boldsymbol{u}^{\top} / \|\boldsymbol{u}\|^2$ is the same as the block orthogonal matrix $\begin{bmatrix} I & 0 \\ 0 & H \end{bmatrix}$ where H is the Householder reflection corresponding to $\tilde{\boldsymbol{u}}$.

Givens or Householder? If A is dense, it is in general more convenient to use Householder reflections. Givens rotations come into their own, however, when A has many leading zeros in its rows. E.g., if an $n \times n$ matrix A consists of zeros underneath the first subdiagonal, they can be 'rotated away' in just n-1 Givens rotations, at the cost of $\mathcal{O}(n^2)$ operations!

5.3 Linear least squares

Statement of the problem Suppose that an $m \times n$ matrix A and a vector $\mathbf{b} \in \mathbb{R}^m$ are given. The equation $A\mathbf{x} = \mathbf{b}$, where $\mathbf{x} \in \mathbb{R}^n$ is unknown, has in general no solution (if m > n) or an infinity of solutions (if m < n). Problems of this form occur frequently when we collect m observations (which, typically, are prone to measurement error) and wish to exploit them to form an n-variable linear model, where $n \ll m$. (In statistics, this is known as *linear regression*.) Bearing in mind the likely presence of errors in A and \mathbf{b} , we seek $\mathbf{x} \in \mathbb{R}^n$ that minimises the Euclidean length $||A\mathbf{x} - \mathbf{b}||$. This is the *least squares problem*.

Theorem $x \in \mathbb{R}^n$ is a solution of the least squares problem iff $A^{\top}(Ax - b) = 0$. **Proof.** If x is a solution then it minimises

$$f(\boldsymbol{x}) := \|A\boldsymbol{x} - \boldsymbol{b}\|^2 = \langle A\boldsymbol{x} - \boldsymbol{b}, A\boldsymbol{x} - \boldsymbol{b} \rangle = \boldsymbol{x}^\top A^\top A \boldsymbol{x} - 2\boldsymbol{x}^\top A^\top \boldsymbol{b} + \boldsymbol{b}^\top \boldsymbol{b}.$$

Hence $\nabla f(\boldsymbol{x}) = \boldsymbol{0}$. But $\frac{1}{2} \nabla f(\boldsymbol{x}) = A^{\top} A \boldsymbol{x} - A^{\top} \boldsymbol{b}$, hence $A^{\top} (A \boldsymbol{x} - \boldsymbol{b}) = \boldsymbol{0}$. Conversely, suppose that $A^{\top} (A \boldsymbol{x} - \boldsymbol{b}) = \boldsymbol{0}$ and let $\boldsymbol{u} \in \mathbb{R}^n$. Hence, letting $\boldsymbol{y} = \boldsymbol{u} - \boldsymbol{x}$,

$$\begin{split} \|A\boldsymbol{u} - \boldsymbol{b}\|^2 &= \langle A\boldsymbol{x} + A\boldsymbol{y} - \boldsymbol{b}, A\boldsymbol{x} + A\boldsymbol{y} - \boldsymbol{b} \rangle = \langle A\boldsymbol{x} - \boldsymbol{b}, A\boldsymbol{x} - \boldsymbol{b} \rangle + 2\boldsymbol{y}^{\top}A^{\top}(A\boldsymbol{x} - \boldsymbol{b}) \\ &+ \langle A\boldsymbol{y}, A\boldsymbol{y} \rangle = \|A\boldsymbol{x} - \boldsymbol{b}\|^2 + \|A\boldsymbol{y}\|^2 \ge \|A\boldsymbol{x} - \boldsymbol{b}\|^2 \end{split}$$

and \boldsymbol{x} is indeed optimal.

Corollary Optimality of $x \Leftrightarrow$ the vector Ax - b is orthogonal to all columns of A.

Normal equations One way of finding optimal \boldsymbol{x} is by solving the $n \times n$ linear system $A^{\top}A\boldsymbol{x} = A^{\top}\boldsymbol{b}$; this is the method of *normal equations*. This approach is popular in many applications. However, there are three disadvantages. Firstly, $A^{\top}A$ might be singular, secondly sparse A might be replaced by a dense $A^{\top}A$ and, finally, forming $A^{\top}A$ might lead to loss of accuracy. Thus, suppose that our computer works in the IEEE arithmetic standard (≈ 15 significant digits) and let

$$A = \begin{bmatrix} 10^8 & -10^8 \\ 1 & 1 \end{bmatrix} \implies A^{\top}A = \begin{bmatrix} 10^{16} + 1 & -10^{16} + 1 \\ -10^{16} + 1 & 10^{16} + 1 \end{bmatrix} \approx 10^{16} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}.$$

Given $\boldsymbol{b} = [0, 2]^{\top}$ the solution of $A\boldsymbol{x} = \boldsymbol{b}$ is $[1, 1]^{\top}$, as can be easily found by Gaussian elimination. However, our computer 'believes' that $A^{\top}A$ is singular!

QR and least squares

Let A be an $m \times n$ matrix with $m \ge n$, and let A = QR be a reduced QR factorization where Q is $m \times n$ has orthonormal columns and R is $n \times n$ upper triangular. We know that \boldsymbol{x} is a solution to the least squares problem iff $A\boldsymbol{x} - \boldsymbol{b}$ is orthogonal to all columns of A. Since the columns of Q span the same space as the columns of A this is equivalent to saying that $Q^{\top}(A\boldsymbol{x} - \boldsymbol{b}) = 0$. Since the columns of Q form an orthonormal system we have³ $Q^{\top}Q = I_n$, and so this leads to the equation $R\boldsymbol{x} = Q^{\top}\boldsymbol{b}$. The latter can be solved using backsubstitution.

³Note however that QQ^{\top} is not equal to the identity matrix! (Q is a rectangular matrix here)