Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

Exercise sheet 1

You can return your solutions to questions 6 and 7 to get them marked. If so, please upload them
on Moodle before Monday 7/2 at 12noon.

1. Show that if f : R®™ — R is convex, then the sublevel sets S; = {z € R" : f(z) < t} are
convex, for all t. Is the converse true? Prove or give a counterexample.

2. Show that if f : R” — R is convex, then g(x,t) = tf(x/t) is convex for ¢t > 0. What is the
domain of g7

3. (a) Show that if g : R” x R™ — R is convex, then f(z) = infycgrm g(z,y) is convex. (b)
Assuming g is a convex quadratic, i.e., g(x,y) = (x, Az)+(y, Cy)+2 (x, By), where [BAT g] -
0, give an explicit expression for f(z).

4. Let f: R™ — R be a convex function. (a) Show that f is m-strongly convex with respect
to the Euclidean norm iff f — (m/2)||z||3 is convex. (b) Show that Vf is L-Lipschitz with
respect to the Euclidean norm iff (L/2)||z||3 — f is convex.

5. Show that if f: R™ — R is convex and L-smooth, and z* € int dom(f) is a minimizer of f,
then for any y € dom(f)
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Show further, that if dom(f) = R", then for all y € R"
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6. (*) Show that if f : R™ — R is m-strongly convex, and z* € int dom(f) is the minimizer of
f, then for any y € dom(f)
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7. (*) Prove that the following functions are convex on their domain:

(a) f(z) = | Az — b2 where z € R"
(b) f(z) =log(>_"  e™) where x € R"

(¢) f(x) = sum of k largest components of z, where z € R™ and k € {1,...,n}. (for
example, f(z) = max;—1,nx; when k=1, and f(z) =21+ -+ 2, when k =n.)

(d) f(X) = largest eigenvalue of X (X real symmetric n x n matrix)

(e) f(X)= —logdet X where X is a symmetric positive definite matrix
(f) f(z,y) = >oio; wilog(xi/y;) where ,y € R}

Also specify which functions are smooth, in which case provide an expression for the gradient
and Hessian (if applicable).



8.

10.

Prove that the gradient method, with the following backtracking line search, converges at
the rate O(1/k): at each iteration k, initialize t; to 1 and keep updating t; < St; (where

B € (0,1)) until f(zx — txV f(zx)) < flar) = (1/2)t6]|V f (2013

. Consider the problem of minimizing a convex function f(z) on a closed convex set C, i.e., we

want to compute mingec f(x). The projected gradient method works as follows: starting from
xo € C, let xp1 = Po(xr —txV f(xr)) where Po is the Euclidean projection on C' defined by

Po(z) = argmin ly — o3
yeC
By adapting the convergence proof of the gradient method seen in lecture, show that the
projected gradient method converges with a rate O(1/k) when V[ is assumed L-Lipschitz,
and the step size t, is fixed ty =t € (0,1/L].

Implement the gradient method and fast gradient method to minimize the following convex
function (logistic regression loss)

N
flz) = Z log [1 + exp(yia;-rw)]
i=1

where a1, ...,ay € R" and y1,...,yny € {—1,+1} are randomly generated. Take N = 50 and
n = 30. Plot f(zr) — f* as a function of k. Comment.



