
Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

Exercise sheet 2

You can return your solutions to questions 6 and 7 to get them marked. If so, please upload them
on Moodle before Monday 28/02 at 12noon.

1. Let f : Rn → R convex. Show that f is G-Lipschitz (with respect to the `2 norm) iff ‖g‖2 ≤ G
for all g ∈ ∂f(x) for all x ∈ Rn.

2. (Directional derivatives) Let f : Rn → R̄ be convex. Let x ∈ int dom(f).

(i) Show that the directional derivative of f

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t

is well-defined for any h, even if f is not differentiable at x. [Hint: show that the limt→0+ can
be replaced by inft→0+.]
(ii) Show that f ′(x;h) is homogeneous in h, i.e., f ′(x;λh) = λf ′(x;h) for all λ > 0. Show
that f ′(x;h) is convex in h.
(iii) Let g be a subgradient for v 7→ f ′(x; v) at v = h. Show that f ′(x;h) = 〈g, h〉 and that
f ′(x; v) ≥ 〈g, v〉 for all v. Deduce from the latter that g ∈ ∂f(x).
(iv) Deduce from the above that f ′(x;h) = maxg∈∂f(x) 〈g, h〉.

3. (Subgradient calculus) Let f : Rn → R be a convex function with dom(f) = Rn and let
A : Rm → Rn be a linear map. Let h(x) = f(Ax). The goal of this exercise is to show that
∂h(x) = A∗∂f(Ax).
(i) Show that h′(x; v) = f ′(Ax;Av), where h′(x; v) is the directional derivative defined in the
previous exercise.
(ii) Deduce that for any v, maxg∈∂h(x) 〈g, v〉 = maxg∈A∗∂f(Ax) 〈g, v〉.
(iii) Conclude (hint: use the strict separating hyperplane theorem).

4. Let f be a convex function such that ∂f(x) is a singleton, namely ∂f(x) = {g}. Using
Question 2(iv), show that f is differentiable at x, i.e.,

f(x+ h)− f(x)− 〈g, h〉
‖h‖

→ 0 as h→ 0.

5. Let f(x) = maxi=1,...,m(aTi x + bi) where a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R. Given x ∈ Rn

let I(x) =
{
i ∈ {1, . . . ,m} : aTi x+ bi = f(x)

}
. Show that the subdifferential of f at x is given

by
∂f(x) = conv {ai : i ∈ I(x)} (1)

where conv(X) denotes the convex hull of X.

6. (*) Show that the subgradient method with step size ti = (f(xi) − f∗)/‖gi‖22 (known as
Polyak step size) gives iterates fbest,k that converge to f∗ at the rate 1/

√
k (hint: start from

the inequalities relating ‖xk+1 − x∗‖22 to ‖xk − x∗‖22).
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7. (*) Consider the following optimization problem for denoising a one-dimensional signal b ∈ Rn:

min
x∈Rn

‖x− b‖22 + γ‖Dx‖1

where γ > 0, and D ∈ R(n−1)×n is the finite-difference operator Dx = [xi+1 − xi]1≤i≤n−1.
After introducing the new variable y = Dx, compute the Lagrangian and the dual problem,
and discuss algorithms to solve the dual problem as well as their convergence properties.
Compare with the subgradient method applied to the original problem. Extra: implement
the algorithms with b a piecewise constant signal corrupted by some Gaussian noise.

8. (a) Let Rn
+ = {x ∈ Rn : xi ≥ 0 ∀i}. Compute the normal cone of Rn

+ at any x ∈ Rn
+.

(b) Consider the following linear program:

min
x∈Rn

cTx s.t. Ax = b, x ≥ 0

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Derive the KKT conditions for optimality. What is
the dual optimization problem?

9. (a) Let Sn
+ be the convex cone of real symmetric n×n matrices that are positive semidefinite.

Compute the normal cone of Sn
+ at any X ∈ Sn

+. [The inner product for two real symmetric
matrices A,B ∈ Sn is 〈A,B〉 = tr(AB) =

∑
ij AijBij .]

(b) Consider the following convex optimization problem, known as a semidefinite program:

min
X∈Sn

〈C,X〉 s.t. A(X) = b,X ∈ Sn
+

where A : Sn → Rm is a linear map, b ∈ Rm and C ∈ Sn. Assuming that int(Sn
+)∩ {A(X) =

b} is nonempty, derive the KKT conditions for optimality. What is the dual optimization
problem?

10. Implement the subgradient method to minimize ‖Ax − b‖1 where A and b are generated at
random. Experiment with different choices of step size.

11. (Lower complexity bound for the subgradient method) In this exercise we prove a lower
complexity bound for nonsmooth convex optimization. Consider an algorithm that starts at
x0 = 0 and such that when applied to a function f , the (i+ 1)’th iterate satisfies

xi ∈ span {g0, . . . , gi} (2)

where g0 ∈ ∂f(x0) = ∂f(0), . . . , gi ∈ ∂f(xi).

(a) Consider the function

f(x) = max
i=1,...,n

xi +
1

2
‖x‖22

with x ∈ Rn. Compute ∂f(x) for any x.

(b) Compute f∗ = minx∈Rn f(x) and find a minimizer x∗.

(c) Show that f is (1 + R)-Lipschitz on the Euclidean ball {x ∈ Rn : ‖x‖2 ≤ R} [Hint:
consider ‖g‖2 for g ∈ ∂f(x).]
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(d) A first-order oracle for f gives, for any x ∈ Rn, an element g ∈ ∂f(x). Show that one
can design a specific first-order oracle for f ensuring that xi satisfying (2) is always
supported on the first i components only (i.e., the components i+ 1, . . . , n are zero).

(e) Set n = k + 1. Show that for any algorithm satisfying (2), the following holds:

fbest,k − f∗

G‖x0 − x∗‖2
≥ c√

k + 1

for a constant c > 0, where fbest,k = min{f(x0), . . . , f(xk)} and G is the Lipschitz
constant of f on the Euclidean ball of radius ‖x0 − x∗‖2 centered at x0.
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