
Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

Exercise sheet 3

You can return your solutions to questions 1 and 6 to get them marked. If so, please upload them
on Moodle before Monday 14/3 at 12noon.

1. (Bregman subgradient method) Let φ : Rn → R be a smooth and strictly convex function,
and let Dφ be its Bregman divergence. Let f : Rn → R be a potentially nonsmooth convex
function, and consider the following Bregman subgradient method:

xk+1 = argmin
x∈Rn

{tk 〈gk, x− xk〉+Dφ(x|xk)}

where gk ∈ ∂f(xk).
(a) Show that for φ(x) = ‖x‖22/2 we recover the usual subgradient method.
(b) Let ‖ · ‖ be an arbitrary norm on Rn. We assume that φ is 1-strongly convex with respect
to ‖ · ‖. Show that the iterates of the Bregman subgradient method satisfy:

Dφ(x∗|xk+1) ≤ Dφ(x∗|xk) +
1

2
‖tkgk‖2∗ + tk(f(x∗)− f(xk))

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Deduce:

fbest,k − f∗ ≤
Dφ(x∗‖x0)∑k

i=0 ti
+

∑k
i=0 t

2
i ‖gi‖2∗∑k

i=0 ti
.

where fbest,k = min {f(x0), . . . , f(xk)}.

2. (Conjugate functions) Let f be convex and lower semicontinuous. Define the conjugate of f
by

f∗(ξ) = sup
x∈dom(f)

{〈ξ, x〉 − f(x)} .

Show that

• Biduality: f∗∗ = f

• f(x) + f∗(ξ) = 〈ξ, x〉 ⇐⇒ x ∈ ∂f∗(ξ) ⇐⇒ ξ ∈ ∂f(x)

• Moreau’s identity: proxf∗(x) = x− proxf (x)

• If f is m-strongly convex with respect to ‖ · ‖, then dom(f∗) = Rn and f∗ is smooth
with

∇(f∗)(ξ) = argmax
x∈dom(f)

{〈ξ, x〉 − f(x)} .

Moreover, ∇(f∗) is (1/m)-Lipschitz with respect to ‖ · ‖, i.e., ‖∇f∗(ξ1) − ∇f∗(ξ2)‖ ≤
‖ξ1 − ξ2‖∗, where ‖ · ‖∗ is the dual norm.

3. (Mirror descent) Let f : Rn → R be convex, and let φ : Rn → R be smooth strongly convex.
Consider the following iterative method to minimize f(x):

xk+1 = ∇φ∗(∇φ(xk)− tkgk) (1)

where gk ∈ ∂f(xk) and where φ∗ denotes the conjugate function of φ. Show that (1) is
equivalent to the Bregman subgradient method considered in the first question.
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4. (Smoothing via conjugate functions)

(a) Assume f is a convex function given as f(x) = h∗(Ax + b) where h is convex lower-
semicontinuous, defined on a compact domain D, i.e.,

f(x) = max
y∈D

{
yT (Ax+ b)− h(y)

}
.

Let d be convex function defined on D which is 1-strongly convex with respect to the Euclidean
norm, and consider for µ > 0 the function

fµ(x) = (h+ µd)∗(Ax+ b).

Show that fµ is smooth, with smoothness parameter (with respect to Euclidean norm) L =
‖A‖2/µ where ‖A‖ is the operator norm of A. Further, show that

f − µR ≤ fµ ≤ f

where R = maxd∈D d(x).

(b) Examples: (i) let f(x) = ‖Ax+ b‖1 which we can write as f(x) = h∗(Ax+ b) where h is
the indicator function of the unit `∞ ball. Compute fµ(x) explicitly for d(y) = ‖y‖22/2, and

for d(y) =
∑

i 1−
√

1− y2i (check that both functions are 1-strongly convex).

5. (Newton’s method) Let f : Rn → R be m-strongly convex and L-smooth (i.e., mI � ∇2f(x) �
LI for all x ∈ Rn). Consider Newton’s method with constant step size tk = m/L

x+ = x− m

L
∇2f(x)−1∇f(x).

Show that f(x+)− f(x) ≤ −c‖∇f(x)‖22 for some constant c > 0 that depends only on m and
L that you should specify.

6. (2D Total variation denoising) An image is represented by a matrix b = (bij) of size N ×
N , where each entry bij represents the (i, j) pixel intensity. To denoise a noisy image b,
we consider the following optimization-based approach (known as the Rudin-Osher-Fatemi
model):

min
x∈RN×N

∑
ij

(xi,j − bi,j)2 + λ
∑

1≤i,j≤N−1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2.

The solution of this optimization problem is the candidate denoised image. Discuss algorithms
you can use to solve this problem. Extra: Implement the methods you propose with b = b0+ε
where b0 is a clean image, and ε is some randomly generated Gaussian noise.
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