Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

Exercise sheet 3

You can return your solutions to questions 1 and 6 to get them marked. If so, please upload them
on Moodle before Monday 14/3 at 12noon.

1. (Bregman subgradient method) Let ¢ : R™ — R be a smooth and strictly convex function,
and let Dy be its Bregman divergence. Let f : R™ — R be a potentially nonsmooth convex
function, and consider the following Bregman subgradient method:

Tpy1 = argmin {ty, (gr, v — zx) + Dy (z|zk)}

r€R™

where g, € Of (z).

(a) Show that for ¢(z) = ||z||3/2 we recover the usual subgradient method.

(b) Let || - || be an arbitrary norm on R™. We assume that ¢ is 1-strongly convex with respect
to || - ||. Show that the iterates of the Bregman subgradient method satisfy:

* * 1 *
Dy(z*|zp11) < Do(a™|ax) + thkngz +tr(f(2") = flar))
where || - ||« is the dual norm of || - ||. Deduce:
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where fpest,r = min {f(zo), ..., f(zk)}.
2. (Conjugate functions) Let f be convex and lower semicontinuous. Define the conjugate of f
by
fr&) = sup {(&z) - fla)}

zedom(f)
Show that
e Biduality: f** = f
o flx)+ 1§ =({z) <= z€df(§) «— {€if(x)

e Moreau’s identity: prox;.(r) = r — prox;(r)

e If f is m-strongly convex with respect to || - ||, then dom(f*) = R™ and f* is smooth
with
V(f7)(€) = argmax {(€.2) — f(x)}.
zedom(f)
Moreover, V(f*) is (1/m)-Lipschitz with respect to || - ||, i.e., [|[Vf*(&) — Vf*(&)]| <
|€1 — &2]|«, where || - ||« is the dual norm.

3. (Mirror descent) Let f:R™ — R be convex, and let ¢ : R" — R be smooth strongly convex.
Consider the following iterative method to minimize f(z):

Try1 = Vo' (Vo(xr) — thgr) (1)

where g, € Of(xx) and where ¢* denotes the conjugate function of ¢. Show that (1) is
equivalent to the Bregman subgradient method considered in the first question.



4. (Smoothing via conjugate functions)

(a) Assume f is a convex function given as f(x) = h*(Ax + b) where h is convex lower-
semicontinuous, defined on a compact domain D, i.e.,

f(x) = max {y"(Az +b) — h(y)}.

Let d be convex function defined on D which is 1-strongly convex with respect to the Euclidean
norm, and consider for g > 0 the function

Ju(x) = (h + pd)*(Az + ).

Show that f,, is smooth, with smoothness parameter (with respect to Euclidean norm) L =
|A||*/pn where || A| is the operator norm of A. Further, show that

f—pR< fu < f

where R = maxgep d(z).

(b) Examples: (i) let f(x) = ||Az + b||; which we can write as f(z) = h*(Ax + b) where h is
the indicator function of the unit £ ball. Compute f,(z) explicitly for d(y) = ||y||3/2, and

for d(y) = >, 1 — /1 — y? (check that both functions are 1-strongly convex).

5. (Newton’s method) Let f : R® — R be m-strongly convex and L-smooth (i.e., mI < V2f(z) <
LI for all x € R™). Consider Newton’s method with constant step size t = m/L

=z %sz(a:)ﬂVf(x).
Show that f(zT) — f(x) < —c||[Vf(x)||3 for some constant ¢ > 0 that depends only on m and
L that you should specify.

6. (2D Total variation denoising) An image is represented by a matrix b = (b;;) of size N x
N, where each entry b;; represents the (i,7) pixel intensity. To denoise a noisy image b,
we consider the following optimization-based approach (known as the Rudin-Osher-Fatemi
model):

min > (wig—big) HA Y \/($i+1,j = 2i5)? + (Ti g1 — i g)*.
TERNXN — =
) 1<i,j<N-1
The solution of this optimization problem is the candidate denoised image. Discuss algorithms
you can use to solve this problem. Extra: Implement the methods you propose with b = bg+¢

where by is a clean image, and € is some randomly generated Gaussian noise.



