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1 Introduction

In this course we are interested in solving optimization problems:

min f(x) subject to x ∈ X

where f : Rn → R is the objective (or cost) function and X ⊆ Rn is the feasible set. Optimization
problems show up in many areas:

Applications of optimization

• Least-squares/classification: Given data points (x1, y1), . . . , (xn, yn) where xi ∈ Rp and yi ∈ R
we want to find w ∈ Rp and b ∈ R such that yi ≈ wTxi + b. A common way to find such a
w, b is to solve

min
w∈Rp,b∈R

n∑
i=1

(wTxi + b− yi)2. (1)

Having solved this optimization problem and obtained the optimal w, b, the predicted output
ȳ for a new data point x̄ is ȳ = wT x̄+ b.
If yi ∈ {−1,+1} (classification problem), it is more common to use a logistic loss rather than
a least-squares loss. This leads to the optimization problem

min
w∈Rp,b∈R

n∑
i=1

log2

(
1 + e−yi(w

T xi+b)
)
. (2)

Having solved this optimization problem and obtained the optimal w, b, the predicted class
ȳ for a new data point x̄ is ȳ = sign(wT x̄ + b). In nonlinear classification, we have a family
of functions F = {fw : w ∈ Rp} indexed by some real vector w ∈ Rp. For example fw could
be a neural network with weight vector w. The training problem, with a logistic loss, then
becomes

min
w∈Rp,b∈R

n∑
i=1

log2

(
1 + e−yifw(x)

)
.

• Geometry: given a cloud of point x1, . . . , xn ∈ Rp, we want to find the ellipsoid E of minimum
volume that contains the points, i.e., we want to solve

min volume(E) s.t. xi ∈ E ∀i = 1, . . . , n.

Assuming (for simplicity) that the ellipsoid is centered at the origin, we can write E ={
z ∈ Rp : zTQ−1z ≤ 1

}
where Q is a p × p real symmetric matrix that is positive definite.

Then the volume of E is proportional to det(Q). Thus our problem can be written as

min det(Q) s.t.

{
Q is positive definite

xTi Q
−1xi ≤ 1.

(3)
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• Graph theory: given a graph G = (V,E) where E ⊂
(
V
2

)
, a stable set of G is a subset S of

vertices that are pairwise nonadjacent, i.e., i, j ∈ S ⇒ {i, j} /∈ E. The maximum stable set
problem asks for the largest stable set in a given graph G

max |S| s.t. S stable set.

Such a problem can be reformulated as a constrained optimization over Rn by considering
the characteristic vector x of S:

max
x∈Rn

n∑
i=1

xi s.t.

{
x2i = xi ∀i = 1, . . . , n

xixj = 0 ∀{i, j} ∈ E.

Optimization on the cube To illustrate some of the concepts in this course consider the problem
of minimizing a function f : Rn → R on [0, 1]n, i.e., to compute:

f∗ = min
x∈[0,1]n

f(x).

Our goal will be to find a solution with accuracy ε > 0:

Find x̄ s.t. f(x̄)− f∗ ≤ ε. (*)

The algorithms have access to f through a black box which, given an input x ∈ [0, 1]n returns the
value f(x) ∈ R. This is called an zeroth-order oracle model1 The complexity of an algorithm on a
given function f is the number of queries it makes to the oracle. So a general algorithm has the
following form:

1. Query oracle at x0 ∈ [0, 1]n to get value f0 = f(x0)

2. Query oracle at x1 ∈ [0, 1]n (allowed to depend on f0) to get value f1 = f(x1)

3. Query oracle at x2 ∈ [0, 1]n (allowed to depend on f0, f1) to get value f2 = f(x2)

4. . . .

5. Query oracle at xN−1 ∈ [0, 1]n (allowed to depend on f0, . . . , fN−2) to get value fN−1 =
f(xN−1)

6. Output x̄ based on the gathered information about f

We will consider the class of functions that are L-Lipschitz with respect to `∞ norm

FL = {f : [0, 1]n → R s.t. |f(x)− f(y)| ≤ L‖x− y‖∞ ∀x, y ∈ [0, 1]n}

where ‖x‖∞ = maxi=1,...,n |xi|. We can prove the following:

Proposition 1.1. There is an algorithm that can return an ε-accurate minimizer (in the sense of
(*)) of any f ∈ FL with a number of queries ≤ (b L2εc+ 2)n.

1A first-order oracle returns the gradient of f at x, and a second-order oracle returns the Hessian of f at x. We
will see this later...
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Proof. Grid search. We discretize the cube [0, 1]n using grid points that are equispaced by 2ε/L in
each dimension. Let (xi)i=1,...,N be the grid points; there are N ≤ (b L2εc+ 2)n such grid points (we
include points at coordinate 0 and coordinate 1, hence the +2). Let x̄ be the grid point where the
value of f is smallest, i.e.,

x̄ = argmin
x∈{x1,...,xN}

f(x).

We claim that this algorithm achieves the desired accuracy. Indeed, let x∗ be a minimizer of f on
[0, 1]n, and let x̃ be the closest grid point to x∗ in the `∞ norm. Since the grid is equispaced by
2ε/L it is not difficult to see that ‖x∗ − x̃‖∞ ≤ ε/L. Then we have

f(x̄)− f∗ ≤ f(x̃)− f∗ ≤ L‖x̃− x∗‖∞ ≤ ε

as desired.

The algorithm produced in the previous proposition is not great. For functions of large number
of variables n the algorithm is not at all practical. Can we do better? The answer turns out to be
no, if we want our algorithm to work for all f ∈ FL.

Proposition 1.2. Assume A is an algorithm that returns an ε-accurate minimizer for all f ∈ FL.
Then there is at least one function f ∈ FL on which A does at least ≥ (b L3εc)

n − 1 queries.

Proof. Recall that an algorithm A is given by a sequence of query points x0, x1, . . . where each query
point is allowed to depend on the answer received on the previous ones. We are going to simulate
the algorithm on the function f(x) ≡ 0 (the function equal to zero everywhere). On such a function
the algorithm will query certain (fixed) points x0, x1, x2, . . . , xN−1 all in [0, 1]n before producing
a point x̄ ∈ [0, 1]n. Let S = {x0, . . . , xN−1, x̄}. We claim that necessarily |S| ≥ (bL/(3ε)c)n. Fix
η = 3ε/L and consider dividing [0, 1]n into small boxes each of size η. We have at least b1/ηcn
disjoint such boxes. Assuming for contradiction that |S| < (b1/ηc)n, by the pigeonhole principle,
there exists at least one box which does not contain any point from S. Let x∗ be the center of that
box and define the function

f(x) = min(0, L‖x− x∗‖∞ − ηL/2).

Note that f ∈ FL, it is zero outside the box centered at x∗ and its minimum is −ηL/2 = −3ε/2.
If we run the algorithm on this function f we will get the same output as for the function that
is identically zero (the x̄ ∈ S from above). But this x̄ is outside the box centered at x∗ and so
f(x̄) = 0. This contradicts the assumption that the algorithm achieves ε accuracy on all functions
in FL because f(x̄)− f∗ = 3ε/2 > ε. Thus it must be that |S| ≥ b1/ηcn = (b L3εc)

n.

We have thus shown that the following min-max quantity

min
Algorithms A that achieve
(*) for all functions in FL

max
f∈FL

Complexity of A on f

lies between ( L3ε)
n and ( L2ε + 2)n.

Convex optimization The focus of this course will be on convex optimization problems. A
convex optimization problem has the form

min
x∈Rn

f(x) subject to x ∈ X

3



where X ⊂ Rn is a convex set (i.e., x, y ∈ X and λ ∈ [0, 1] implies λx+ (1− λ)y ∈ X) and where
f : Rn → R is a convex function, i.e.,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rn and λ ∈ [0, 1]. Examples of convex optimization problems include:

• Least-squares: minx∈Rn ‖Ax− b‖22 where A ∈ Rm×n and b ∈ Rm.

• Linear programming: minimizing a linear function subject to linear inequality constraints

min
x∈Rn

cTx s.t. aT1 x ≤ b1, . . . , aTmx ≤ bm.

• Linear classification with logistic loss, see (2)

• Lasso problem (statistics): minx∈Rn ‖Ax− b‖22 + λ‖x‖1

• The minimum volume enclosing ellipsoid problem in (3) can be formulated as a convex opti-
mization after a suitable change of variables (P = Q−1).

• Many others...
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