Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

10 Proximal methods

Proximal operator The proximal mapping is a “functional” generalization of the projection
mapping. Given a convex function f : R” — R, the proximal mapping associated to f is

. 1

prox;(y) = arguin { 7(0) + e — 3} )
zeR?

Clearly the proximal operator of the indicator function Ic of a closed convex set is precisely the

projection operator.

The next proposition guarantees that prox; is well-defined under mild conditions on f. A
function f is lower-semicontinuous (Isc) if f(x) < liminf; o f(z;) for any sequence (x;) converging
to x.

EXERCISE: Let f : R® — R. Prove that the following are equivalent: (i) f is lower-
semicontinuous, (i) epi(f) is closed, (iii) all the sublevel sets f~!((—o0, a]) are closed.

Proposition 10.1. If f is lower-semicontinuous, then proxf(y) is well-defined for all y € R™.

Proof. Let g(z) = f(z) + (1/2)||z — yl||3. Since g is strongly convex, any minimizer is necessarily
unique. It remains to show that a minimizer exists. First note that g is bounded below: since
f is convex it can be lower bounded by an affine function f(z) > (a,z) + b, and so g(x) >
{a,z)+b+(1/2)||x—y||3 > mingegn{{a, z)+b+(1/2)||x—y||3} = ¢ > —oc. Also note that the sublevel
sets of g are all bounded since g(z) <t = {(a,2)+b+(1/2)|lz—y|3 <t — |z—(y—a)|3 < C
for some constant C' > 0. Now let (z;) be a sequence so that g(z;) | infyern g(z). The sequence
(z;) lives in the sublevel set {z : g(z) < g(x1)} which is closed and bounded. Thus we can extract
from (z;) a converging subsequence, that converges to some z. Since g is lower semicontinuous we
have g(x) < liminf; g(z;) = inf g, and so = is a minimizer of g. O

Note that
r=proxs(y) <= 0€9f(r)+(z—y) < yecx+If(z). (2)

Remark 1. If f is smooth, we see that x = prox;(y) is a solution to the nonlinear equation
x4+ Vf(z) =1y, ie., it satisfies v = (I + V)" (y).

Just like with the projection, one can prove that the proximal map is nonexpansive, i.e., that
| prox;(y1) — prox(y2)ll2 < [[y1 — ya2ll2-

To see why, let 1 = prox;(y1) and 3 = prox;(y2). Then y; — 21 € df(x1), and so we can write:
f(x2) = f(@1) + (1 — 21,22 — 71) -

Similarly, from yo — x9 € Of(x2), we get
f(z1) = f(@2) + (y2 — 22,21 — 22) -

Summing the two inequalities, we get 0 > (x1 — y1 + y2 — 2,1 — x2) which corresponds to

21 = 2|3 < (1 — y2, 21 — x2) (3)

and which, by Cauchy-Schwarz implies ||z1 — z2||2 < [|y1 — y2]|2 as desired.



Example Let f(x) = |z| defined on R. Then one can verify (exercise!) that for any ¢t > 0,

y+t ify<—t
prox,;(y) = argr%in{ll‘l +1/2t)(x —y)*} = Si(y) == 0 if [y| <t (4)
e y—t ify>t.

This function is known as soft-thresholding. See Figure 1.
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Figure 1: The soft-thresholding function (4) for ¢t = 1.
Observe that if f(x) =Y ;" fi(x;), then the prox of f decomposes:

(prox;(y)): = prox;, (y:).

This implies for example that the prox operator of the £; norm function is a componentwise soft-
thresholding:

proxy ., () = [St(yi)]1<i<n

EXERCISE: Compute the proximal operators for the following functions: (i) f(x) = (1/2)2T Ax
where A is symmetric positive definite; (i) f(z) = —>_1" | logx; for x € R .

Proximal gradient methods We onsider a general class of optimization problems where the
objective function F'(z) “splits” into two parts F'(z) = f(z) + h(z) where f(x) is convex, smooth
and L-Lipschitz, and h(x) is convex nonsmooth but “simple” (in a way that will be clear later). So
we want to solve

min F(x) = f(z) +h(z). (5)

Examples:

e Clearly if h = I¢ is the indicator function of a convex set C' then problem (5) is equivalent
to minimizing f(z) on C.

e Optimization problems of the form (5) are very common in statistics where f(z) is a “data
fidelity” term (e.g., f(z) = |Az — b||3 for a linear model with a squared loss) and h(z) is a
“regularization” term (e.g., h(z) = ||z||; to promote sparsity).

The proximal gradient method to solve (5) proceeds as follows. Starting from any zp € R",
iterate:

Try1 = Prox,, , (vx — txVf(xy)) (6)



where t;, > 0 are the step sizes.
Remarks:

e When h is the indicator function of convex set C, then iterates (6) correspond to projected
gradient descent.

e If 2* is a fixed point of (6), i.e., x* = proxy,(z* — tV f(z*)), then this means by (2) that
¥ —tVf(z*) — x* € tOh(z*), i.e., 0 € O(f + h)(z*) which implies that z* is a minimizer of
F(z) = f(x) + h(z), as desired.

e From (2) we know that x;1 = prox, ;(z) — t,V f(zx)) should satisfy

Tpp1 = 2 — 4V f(x) — teh (Tp41) (7)

for some h'(xg4+1) € Oh(xks1). The main difference with a standard (sub)gradient method
applied to f+h is that we have h/(x11) on the right-hand side, and not h’(xy). [cf. backward
Euler vs. forward Euler for the discretization of ODEs. In fact, the proximal gradient method
is also known as the forward-backward method.]

e Using the definition of prox, we see that the iterate (6) can be written as

) 1
s = anguin { () + 1o~ 0.9 (o0) ~ ul
uER™ 73

= arguin { 1(21) + V(@) ) + h(0 + 5, = 3}
u€eR” k

The term f(zx)+(V f(zk), u)+h(u) is a local approximation of the cost function f+h around
7. The term ﬁ”u — x1||3 ensures that we only trust this approximation close to zy.

The convergence proof of the proximal gradient method is very similar to gradient method. We
consider the two cases where f is m-strongly convex and L-smooth, and the case where f is simply
L-smooth.

e f strongly convex. We assume here that f is twice differentiable, and that mI < V2f(x) < LI.
We have, using the fact that z* is a fixed point of the iteration map (see second remark above)

la* = 2|2 = || proxy, (z — tV f(2)) — prox,,(a” — ¢tV f(z"))|2
<o —a” =tV f(z) = V()2

where in the second line we used the fact that the proximal operator is nonexpansive. Now we have
1
Vf(x)—Vf(z")=Vf(z")+ / V2if(z* + ol — 2))(z — 2%)da = M(z — z¥)
0

where M = fol V2f(z*+a(z—z*))da is a symmetric matrix whose eigenvalues all lie in [m, L]. Thus
we get ||zt —a*|lo < [[(I—tM)(z—2a*)||2 < ||[I—tM||||x —x*|]2 where ||[I —tM]| is the operator norm
of I—tM. When t = 2/(m+ L) we have already seen in Lecture 3 that || —tM|| < (L—m)/(L+m).

k
This shows that ||z — z*||2 < (%) lxo — x*||2.

e We now sketch the proof, in the case where f is just L-smooth.

Theorem 10.1. Let F = f + h, and assume f : R" — R is convex L-smooth (i.e., Vf is L-
Lipschitz) and h is convex. For constant step size ty, =t € (0,1/L] the iterations of (6) satisfy
F(zg) = F* < g llwo — 2*[13.



Proof. We start in the same way as the standard gradient method

Fa*) < F@)+ (Vi @), 2"~ 2) + 2 la* — 2l

From (7) we know that we can write 7 = x — tV f(x) — th/(z") where h/(z) € dh(x™). Thus
plugging Vf(z) = 1(z — 2T) — W/ (z) we get

Fat) < Fla) — e — B + (W), e —at) + 5l a3
< @) = Sl —a¥I30 - Lt/2) + (W(at), o — a¥)

= (&) — gl — 2t B+ (W), — o)

where in the last line we used ¢t = 1/L. Now we substract f(z*) from each side to get

fa) - F(a*) < f(@) - fla®) - inx — 2t B+ (W), w - 2t

<(Vf(z),r —a") - |fﬂ7—$+H2+<h/ ),z —a")

- <x_x — W (xh),z >—21tHx—a:+||§+<h/(x+),x—x+>
() 1 N N

= o ||z — z*|]3 — ||z — z*||3] + (W (zT), 2" —a™)

) 1 L ) N

< 2*[||$—l‘ 13 = lla® — 2*||5] + h(z*) — h(z™)

where in (a) we used completion of squares, and in (b) we used convexity of h. The last inequality

tells us that

F(2™) - F(z") < T a3l

The rest of the proof is straightforward. O

e =275 = 2

| =

Fast proximal gradient method There is a fast version of the proximal gradient method that
converges in O(1/k?). The algorithm takes the form:

Yy = x + Br(xr — xp_1)
Tpt1 = Prox,,, (y — eV f(y)).

One can adapt the proof of the fast gradient method to show that (8) (withe.g., B = (k—1)/(k+2))
has a convergence rate of O(1/k?).

(8)

Regression with ¢ regularization (Lasso, compressed sensing, ...) Consider the problem

min ||Az — b||3 + \||z||:. (9)
reR™

where A € R™*™ and b € R™. The ||z||; term in the objective promotes sparsity in the solution z*.
Problem (9) fits (5) with f(z) = || Az — b||3 and h(z) = A||x||;. We saw that the proximal operator
of h is the soft-thresholding operator. The proximal gradient method applied to (9) is called the
iterative shrinkage thresholding algorithm (ISTA) and takes the form

1 = Sni(zp — 2tAT (Azy — b))

where S); is the soft-thresholding operator (4) with parameter A\t. The fast version is known as
FISTA [BT09].
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