
Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

10 Proximal methods

Proximal operator The proximal mapping is a “functional” generalization of the projection
mapping. Given a convex function f : Rn → R̄, the proximal mapping associated to f is

proxf (y) = argmin
x∈Rn

{
f(x) +

1

2
‖x− y‖22

}
. (1)

Clearly the proximal operator of the indicator function IC of a closed convex set is precisely the
projection operator.

The next proposition guarantees that proxf is well-defined under mild conditions on f . A
function f is lower-semicontinuous (lsc) if f(x) ≤ lim infi→∞ f(xi) for any sequence (xi) converging
to x.

EXERCISE: Let f : Rn → R̄. Prove that the following are equivalent: (i) f is lower-
semicontinuous, (ii) epi(f) is closed, (iii) all the sublevel sets f−1((−∞, a]) are closed.

Proposition 10.1. If f is lower-semicontinuous, then proxf (y) is well-defined for all y ∈ Rn.

Proof. Let g(x) = f(x) + (1/2)‖x − y‖22. Since g is strongly convex, any minimizer is necessarily
unique. It remains to show that a minimizer exists. First note that g is bounded below: since
f is convex it can be lower bounded by an affine function f(x) ≥ 〈a, x〉 + b, and so g(x) ≥
〈a, x〉+b+(1/2)‖x−y‖22 ≥ minx∈Rn{〈a, x〉+b+(1/2)‖x−y‖22} = c > −∞. Also note that the sublevel
sets of g are all bounded since g(x) ≤ t =⇒ 〈a, x〉+ b+(1/2)‖x−y‖22 ≤ t ⇐⇒ ‖x− (y−a)‖22 ≤ C
for some constant C > 0. Now let (xi) be a sequence so that g(xi) ↓ infx∈Rn g(x). The sequence
(xi) lives in the sublevel set {x : g(x) ≤ g(x1)} which is closed and bounded. Thus we can extract
from (xi) a converging subsequence, that converges to some x. Since g is lower semicontinuous we
have g(x) ≤ lim infi g(xi) = inf g, and so x is a minimizer of g.

Note that
x = proxf (y) ⇐⇒ 0 ∈ ∂f(x) + (x− y) ⇐⇒ y ∈ x+ ∂f(x). (2)

Remark 1. If f is smooth, we see that x = proxf (y) is a solution to the nonlinear equation
x+∇f(x) = y, i.e., it satisfies x = (I +∇f)−1(y).

Just like with the projection, one can prove that the proximal map is nonexpansive, i.e., that

‖proxf (y1)− proxf (y2)‖2 ≤ ‖y1 − y2‖2.

To see why, let x1 = proxf (y1) and x2 = proxf (y2). Then y1 − x1 ∈ ∂f(x1), and so we can write:

f(x2) ≥ f(x1) + 〈y1 − x1, x2 − x1〉 .

Similarly, from y2 − x2 ∈ ∂f(x2), we get

f(x1) ≥ f(x2) + 〈y2 − x2, x1 − x2〉 .

Summing the two inequalities, we get 0 ≥ 〈x1 − y1 + y2 − x2, x1 − x2〉 which corresponds to

‖x1 − x2‖22 ≤ 〈y1 − y2, x1 − x2〉 (3)

and which, by Cauchy-Schwarz implies ‖x1 − x2‖2 ≤ ‖y1 − y2‖2 as desired.
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Example Let f(x) = |x| defined on R. Then one can verify (exercise!) that for any t > 0,

proxtf (y) = argmin
x∈R

{
|x|+ 1/(2t)(x− y)2

}
= St(y) :=


y + t if y ≤ −t
0 if |y| < t

y − t if y ≥ t.
(4)

This function is known as soft-thresholding. See Figure 1.
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Figure 1: The soft-thresholding function (4) for t = 1.

Observe that if f(x) =
∑n

i=1 fi(xi), then the prox of f decomposes:

(proxf (y))i = proxfi(yi).

This implies for example that the prox operator of the `1 norm function is a componentwise soft-
thresholding:

proxt‖·‖1(y) = [St(yi)]1≤i≤n

EXERCISE: Compute the proximal operators for the following functions: (i) f(x) = (1/2)xTAx
where A is symmetric positive definite; (ii) f(x) = −

∑n
i=1 log xi for x ∈ Rn++.

Proximal gradient methods We onsider a general class of optimization problems where the
objective function F (x) “splits” into two parts F (x) = f(x) + h(x) where f(x) is convex, smooth
and L-Lipschitz, and h(x) is convex nonsmooth but “simple” (in a way that will be clear later). So
we want to solve

min
x∈Rn

F (x) = f(x) + h(x). (5)

Examples:

• Clearly if h = IC is the indicator function of a convex set C then problem (5) is equivalent
to minimizing f(x) on C.

• Optimization problems of the form (5) are very common in statistics where f(x) is a “data
fidelity” term (e.g., f(x) = ‖Ax − b‖22 for a linear model with a squared loss) and h(x) is a
“regularization” term (e.g., h(x) = ‖x‖1 to promote sparsity).

The proximal gradient method to solve (5) proceeds as follows. Starting from any x0 ∈ Rn,
iterate:

xk+1 = proxtkh (xk − tk∇f(xk)) (6)
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where tk > 0 are the step sizes.
Remarks:

• When h is the indicator function of convex set C, then iterates (6) correspond to projected
gradient descent.

• If x∗ is a fixed point of (6), i.e., x∗ = proxth(x∗ − t∇f(x∗)), then this means by (2) that
x∗ − t∇f(x∗) − x∗ ∈ t∂h(x∗), i.e., 0 ∈ ∂(f + h)(x∗) which implies that x∗ is a minimizer of
F (x) = f(x) + h(x), as desired.

• From (2) we know that xk+1 = proxtkh(xk − tk∇f(xk)) should satisfy

xk+1 = xk − tk∇f(xk)− tkh′(xk+1) (7)

for some h′(xk+1) ∈ ∂h(xk+1). The main difference with a standard (sub)gradient method
applied to f+h is that we have h′(xk+1) on the right-hand side, and not h′(xk). [cf. backward
Euler vs. forward Euler for the discretization of ODEs. In fact, the proximal gradient method
is also known as the forward-backward method.]

• Using the definition of prox, we see that the iterate (6) can be written as

xk+1 = argmin
u∈Rn

{
h(u) +

1

2tk
‖xk − tk∇f(xk)− u‖22

}
= argmin

u∈Rn

{
f(xk) + 〈∇f(xk), u〉+ h(u) +

1

2tk
‖u− xk‖22

}
The term f(xk)+〈∇f(xk), u〉+h(u) is a local approximation of the cost function f+h around
xk. The term 1

2tk
‖u− xk‖22 ensures that we only trust this approximation close to xk.

The convergence proof of the proximal gradient method is very similar to gradient method. We
consider the two cases where f is m-strongly convex and L-smooth, and the case where f is simply
L-smooth.
• f strongly convex. We assume here that f is twice differentiable, and that mI � ∇2f(x) � LI.

We have, using the fact that x∗ is a fixed point of the iteration map (see second remark above)

‖x+ − x∗‖2 = ‖proxth(x− t∇f(x))− proxth(x∗ − t∇f(x∗))‖2
≤ ‖x− x∗ − t(∇f(x)−∇f(x∗))‖2

where in the second line we used the fact that the proximal operator is nonexpansive. Now we have

∇f(x)−∇f(x∗) = ∇f(x∗) +

∫ 1

0
∇2f(x∗ + α(x− x∗))(x− x∗)dα = M(x− x∗)

where M =
∫ 1
0 ∇

2f(x∗+α(x−x∗))dα is a symmetric matrix whose eigenvalues all lie in [m,L]. Thus
we get ‖x+−x∗‖2 ≤ ‖(I−tM)(x−x∗)‖2 ≤ ‖I−tM‖‖x−x∗‖2 where ‖I−tM‖ is the operator norm
of I−tM . When t = 2/(m+L) we have already seen in Lecture 3 that ‖I−tM‖ ≤ (L−m)/(L+m).

This shows that ‖xk − x∗‖2 ≤
(
L−m
L+m

)k
‖x0 − x∗‖2.

• We now sketch the proof, in the case where f is just L-smooth.

Theorem 10.1. Let F = f + h, and assume f : Rn → R is convex L-smooth (i.e., ∇f is L-
Lipschitz) and h is convex. For constant step size tk = t ∈ (0, 1/L] the iterations of (6) satisfy
F (xk)− F ∗ ≤ 1

2kt‖x0 − x
∗‖22.
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Proof. We start in the same way as the standard gradient method

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+
L

2
‖x+ − x‖22.

From (7) we know that we can write x+ = x − t∇f(x) − th′(x+) where h′(x+) ∈ ∂h(x+). Thus
plugging ∇f(x) = 1

t (x− x
+)− h′(x+) we get

f(x+) ≤ f(x)− 1

t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
+
L

2
‖x+ − x‖22

≤ f(x)− 1

t
‖x− x+‖22(1− Lt/2) +

〈
h′(x+), x− x+

〉
= f(x)− 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
where in the last line we used t = 1/L. Now we substract f(x∗) from each side to get

f(x+)− f(x∗) ≤ f(x)− f(x∗)− 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
≤ 〈∇f(x), x− x∗〉 − 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
=

〈
x− x+

t
− h′(x+), x− x∗

〉
− 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
(a)
=

1

2t
[‖x− x∗‖22 − ‖x+ − x∗‖22] +

〈
h′(x+), x∗ − x+

〉
(b)

≤ 1

2t
[‖x− x∗‖22 − ‖x+ − x∗‖22] + h(x∗)− h(x+)

where in (a) we used completion of squares, and in (b) we used convexity of h. The last inequality
tells us that

F (x+)− F (x∗) ≤ 1

2t
[‖x− x∗‖22 − ‖x+ − x∗‖22].

The rest of the proof is straightforward.

Fast proximal gradient method There is a fast version of the proximal gradient method that
converges in O(1/k2). The algorithm takes the form:{

y = xk + βk(xk − xk−1)
xk+1 = proxtkh (y − tk∇f(y)) .

(8)

One can adapt the proof of the fast gradient method to show that (8) (with e.g., βk = (k−1)/(k+2))
has a convergence rate of O(1/k2).

Regression with `1 regularization (Lasso, compressed sensing, ...) Consider the problem

min
x∈Rn

‖Ax− b‖22 + λ‖x‖1. (9)

where A ∈ Rm×n and b ∈ Rm. The ‖x‖1 term in the objective promotes sparsity in the solution x∗.
Problem (9) fits (5) with f(x) = ‖Ax− b‖22 and h(x) = λ‖x‖1. We saw that the proximal operator
of h is the soft-thresholding operator. The proximal gradient method applied to (9) is called the
iterative shrinkage thresholding algorithm (ISTA) and takes the form

xk+1 = Sλt(xk − 2tAT (Axk − b))

where Sλt is the soft-thresholding operator (4) with parameter λt. The fast version is known as
FISTA [BT09].

4



References

[BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009. 4

[PB14] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends® in Opti-
mization, 1(3):127–239, 2014.

5


	Proximal methods

