11 Bregman gradient methods

All the methods and convergence rates we have seen so far depend on the Euclidean structure we put on \mathbb{R}^n . For example, the convergence rates we have derived all involve a term of the form $||x_0 - x^*||_2$. In this lecture we will see that most of the results we have derived can be extended to work with so-called *Bregman divergences*.

11.1 Bregman divergence

Let $\phi : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a smooth, strictly¹ convex function, which is also lower semicontinuous². The *Bregman divergence* associated to ϕ is the function:

$$D_{\phi}(x|y) = \phi(x) - [\phi(y) + \langle \nabla \phi(y), x - y \rangle].$$

defined for all $(x, y) \in \operatorname{dom} \phi \times \operatorname{int} \operatorname{dom} \phi$. Convexity of ϕ tells us that $D_{\phi}(x|y) \ge 0$ for all x, y; and strict convexity tells us that $D_{\phi}(x|y) = 0 \implies x = y$. Examples:

- If $\phi(x) = \|x\|_2^2/2$, then $D_{\phi}(x|y) = \|x\|_2^2/2 \|y\|_2/2 \langle y, x y \rangle = \|x y\|_2^2/2$ is the usual squared Euclidean norm.
- If $\phi(x) = \sum_{i=1}^{n} x_i \log x_i$ defined on \mathbb{R}^n_+ , then

$$D_{\phi}(x|y) = \sum_{i=1}^{n} x_i \log(x_i/y_i) + y_i - x_i$$

is the so-called Kullback-Leibler (KL) divergence, defined for all $x \ge 0$ and y > 0.

Figure 1: Contour plots of $||x - p||_2^2/2$ vs. $D_{KL}(x|p)$, where p = (1/3, 1/3, 1/3), on the unit simplex $\{x \in \mathbb{R}^3 : x \ge 0 \text{ and } x_1 + x_2 + x_3 = 1\}.$

EXERCISE: Show, using strict convexity of ϕ , that the balls $\{x \in \mathbf{dom}(\phi) : D_{\phi}(x|y) \leq r\}$ for any $y \in \mathbf{int} \mathbf{dom} \phi$ and any $r \geq 0$ are all bounded. [Hint: you can use the fact that if C is an

¹A strictly convex function is one that satisfies $\phi(\lambda x + (1 - \lambda)y) < \lambda \phi(x) + (1 - \lambda)\phi(y)$ for all x, y and $\lambda \in (0, 1)$.

²Recall that ϕ is lower semicontinuous iff all its sublevel sets are closed.

unbounded closed convex set, then there is a direction v such that $x + tv \in C$ for all $x \in C$ and $t \ge 0$.]

We will need the following identity, which is straightforward to verify. This identity generalizes the following "completion of squares" identity, which we have used repeatedly in previous convergence proofs:

$$||c - b||_{2}^{2} - 2\langle c - b, a - b \rangle = ||c - a||_{2}^{2} - ||b - a||_{2}^{2}.$$

Proposition 11.1. For any a, b, c we have

$$D_{\phi}(c|b) - \langle \nabla \phi(a) - \nabla \phi(b), c - b \rangle = D_{\phi}(c|a) - D_{\phi}(b|a).$$
(1)

The following figure gives a simple graphical interpretation of this equality.

Figure 2: Illustration of the equality (1) for a univariate function ϕ , where $\phi'(a) = 0$.

11.2 Bregman proximal operator

We define the Bregman proximal operator for a function f to be:

$$\operatorname{prox}_{f}^{\phi}(y) = \operatorname{argmin}_{x \in \mathbb{R}^{n}} \left\{ f(x) + D_{\phi}(x|y) \right\}.$$

When $\phi(x) = ||x||_2^2/2$, this is the proximal operator we saw in the previous lecture. Under mild conditions (e.g., **int dom** $f \subset$ **int dom** $\phi \neq \emptyset$), we have:

$$x = \mathbf{prox}_{f}^{\phi}(y) \iff 0 \in \partial f(x) + \nabla \phi(x) - \nabla \phi(y).$$
⁽²⁾

EXERCISE: Show that if f is lower semicontinuous and bounded below, then $\mathbf{prox}_{f}^{\phi}(y)$ is well-defined.

Properties of the proximal operator We saw that the usual proximal operator is a (firmly) nonexpansive operator. Here, the generalized prox operator satisfies a certain nonexpansive property, but only wrt minimizers.

Proposition 11.2. Let $x = \mathbf{prox}_{f}^{\phi}(y)$. Then for any u, we have

$$f(u) + D_{\phi}(u|y) \ge f(x) + D_{\phi}(x|y) + D_{\phi}(u|x)$$

Note that the inequality would be trivial if we did not have the last term $D_{\phi}(u|x)$.

Proof. From (2), we know that $x = \mathbf{prox}_f^{\phi}(y)$ if, and only if, $\nabla \phi(y) - \nabla \phi(x) \in \partial f(x)$. Thus this means that for any u we have:

$$f(u) \ge f(x) + \langle \nabla \phi(y) - \nabla \phi(x), u - x \rangle$$

By the three-point identity (1) with a = x, b = u, c = y, we have $\langle \nabla \phi(y) - \nabla \phi(x), u - x \rangle = D_{\phi}(x|y) + D_{\phi}(u|x) - D_{\phi}(u|y)$, which gives the desired result.

11.3 Bregman proximal gradient algorithm

Consider the problem of minimizing F(x) = f(x) + h(x) over $x \in \mathbb{R}^n$, where $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is smooth, and $h : \mathbb{R}^n \to \overline{\mathbb{R}}$ has a *simple prox*. The Bregman proximal gradient method, takes the following form:

$$x_{k+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ t(f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + h(x)) + D_{\phi}(x|x_k) \right\},\tag{3}$$

where t > 0 is the step size. If $D_{\phi}(x|x_k) = (1/2)||x - x_k||_2^2$, then this precisely the iteration $x_{k+1} = \mathbf{prox}_{th}(x_k - t\nabla f(x_k))$ that we saw in the last lecture. When h(x) = 0, this method is *not* the usual gradient method.

Example: Consider the problem of minimizing f(x) on \mathbb{R}^n_+ (h(x) = 0). If we choose $D_{\phi} = D_{KL}$ the KL-divergence, then the iterates are defined by $x_{k+1} = \operatorname{argmin}_{x\geq 0}\{t_k \langle \nabla f(x_k), x - x_k \rangle + D_{KL}(x|x_k)\}$ which can be shown to be equal to

$$x_{k+1} = x_k \bullet \exp(-t_k \nabla f(x_k))$$

where \bullet denotes componentwise multiplication, and exp here is the componentwise exponential function. This iteration is known as *exponentiated gradient descent*.

Convergence We have previously studied the convergence of the (standard) proximal gradient method under the assumption that f is L-smooth. Recall that L-smoothness is equivalent to having $L||x||_2^2 - f(x)$ convex. It is thus natural to study the convergence of the Bregman gradient method under the assumption that $L\phi - f$ is convex. In fact, we can show that if $L\phi - f$ is convex, then the iterates of the Bregman proximal gradient method (3) with step size t = 1/L satisfy

$$F(x_k) - F^* \le \frac{LD_{\phi}(x^*|x_0)}{k}.$$
 (4)

Note that this is precisely the same convergence result we obtained before, where the term $||x^*-x_0||_2^2$ is now replaced by $D_{\phi}(x^*|x_0)$.

Proof: The proof follows more or less the same line as the proofs we have seen before. The assumption that $L\phi - f$ is convex tells us that $D_{L\phi-f} \ge 0$, which corresponds to

$$f(x^+) \le f(x) + \left\langle \nabla f(x), x^+ - x \right\rangle + LD_{\phi}(x^+|x).$$

We substract f(u) from each side to get

$$f(x^{+}) - f(u) \leq f(x) - f(u) + \langle \nabla f(x), x^{+} - x \rangle + LD_{\phi}(x^{+}|x)$$

$$\stackrel{(*)}{\leq} \langle \nabla f(x), x - u \rangle + \langle \nabla f(x), x^{+} - x \rangle + LD_{\phi}(x^{+}|x)$$

$$= \langle \nabla f(x), x^{+} - u \rangle + LD_{\phi}(x^{+}|x),$$
(5)

where in (*) we have used convexity of f. So far we haven't used that x^+ is computed from (3). Using Prop. 11.2, with the function $z \mapsto t \langle \nabla f(x), z - x \rangle + th(z)$, we get that

$$t \left\langle \nabla f(x), x^{+} - u \right\rangle + t(h(x^{+}) - h(u)) \le D_{\phi}(u|x) - D_{\phi}(u|x^{+}) - D_{\phi}(x^{+}|x).$$

Using t = 1/L, and plugging in (5) we finally reach

$$t(F(x^+) - F(u)) \le D_{\phi}(u|x) - D_{\phi}(u|x^+)$$

as desired. The rest of the proof is as usual: letting u = x we see that $F(x^+) \leq F(x)$. Then we let $u = x^*$, sum the inequalities from 0 to k - 1 to reach the desired inequality (4).

Remark 1. Another approach to proving convergence is to remark that since $\phi - tf$ is convex, the iteration (3) can be written as:

$$x_{k+1} = \mathbf{prox}_{t(f+h)}^{\phi-tf}(x_k).$$

Using Prop 11.2 we get

$$t(F(x^+) - F(u)) \le D_{\phi - tf}(u|x) - D_{\phi - tf}(u|x^+)$$

Proceeding as usual, we get $F(x_k) - F^* \leq LD_{\phi-tf}(x^*|x_0)/k \leq LD_{\phi}(x^*|x^0)/k$ as desired.

Strongly convex case: For the standard proximal gradient, we saw that if f is m-strongly convex (i.e., $f - m \| \cdot \|_2^2/2$ is convex), then convergence is linear with a rate of 1 - m/L. The same can be proved here. Indeed, we can show that if $f - m\phi$ is convex, then the iterates (3) with t = 1/L satisfy

$$D_{\phi}(x^*|x_k) \le \left(1 - \frac{m}{L}\right)^k D_{\phi}(x^*|x_0).$$

The proof is a simple modification to the proof we just saw: in step (*) of (5), we write the *equality* $f(x) - f(u) = \langle \nabla f(x), x - u \rangle - D_f(u|x)$, and then, since $f - m\phi$ is convex, we upper bound the second term using $D_f(u|x) \ge mD_{\phi}(u|x)$. Continuing with the same steps as before, we eventually get

$$t(F(x^{+}) - F(u)) \le (1 - mt)D_{\phi}(u|x) - D_{\phi}(u|x^{+}).$$

With $u = x^*$, the left-hand side is nonnegative, and so we get $D_{\phi}(u|x^+) \leq (1 - mt)D_{\phi}(u|x)$ which gives us the linear convergence rate.

Remark 2. The assumption $L\phi - f$ convex was introduced in [BBT17] as the Lipschitz-like/Convexity condition, also known as relative smoothness in [LFN18].

References

- [BBT17] Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. *Mathematics of Operations Research*, 42(2):330–348, 2017. 4
- [LFN18] Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018. 4
- [Teb18] Marc Teboulle. A simplified view of first order methods for optimization. Mathematical Programming, 170(1):67-96, 2018.