
Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

11 Bregman gradient methods

All the methods and convergence rates we have seen so far depend on the Euclidean structure we
put on Rn. For example, the convergence rates we have derived all involve a term of the form
‖x0 − x∗‖2. In this lecture we will see that most of the results we have derived can be extended to
work with so-called Bregman divergences.

11.1 Bregman divergence

Let φ : Rn → R̄ be a smooth, strictly1 convex function, which is also lower semicontinuous2. The
Bregman divergence associated to φ is the function:

Dφ(x|y) = φ(x)− [φ(y) + 〈∇φ(y), x− y〉].

defined for all (x, y) ∈ domφ × int domφ. Convexity of φ tells us that Dφ(x|y) ≥ 0 for all x, y;
and strict convexity tells us that Dφ(x|y) = 0 =⇒ x = y.
Examples:

• If φ(x) = ‖x‖22/2, then Dφ(x|y) = ‖x‖22/2 − ‖y‖2/2 − 〈y, x− y〉 = ‖x − y‖22/2 is the usual
squared Euclidean norm.

• If φ(x) =
∑n

i=1 xi log xi defined on Rn+, then

Dφ(x|y) =

n∑
i=1

xi log(xi/yi) + yi − xi

is the so-called Kullback-Leibler (KL) divergence, defined for all x ≥ 0 and y > 0.

Figure 1: Contour plots of ‖x−p‖22/2 vs. DKL(x|p), where p = (1/3, 1/3, 1/3), on the unit simplex
{x ∈ R3 : x ≥ 0 and x1 + x2 + x3 = 1}.

EXERCISE: Show, using strict convexity of φ, that the balls {x ∈ dom(φ) : Dφ(x|y) ≤ r} for
any y ∈ int domφ and any r ≥ 0 are all bounded. [Hint: you can use the fact that if C is an

1A strictly convex function is one that satisfies φ(λx+ (1− λ)y) < λφ(x) + (1− λ)φ(y) for all x, y and λ ∈ (0, 1).
2Recall that φ is lower semicontinuous iff all its sublevel sets are closed.
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unbounded closed convex set, then there is a direction v such that x + tv ∈ C for all x ∈ C and
t ≥ 0.]

We will need the following identity, which is straightforward to verify. This identity gener-
alizes the following “completion of squares” identity, which we have used repeatedly in previous
convergence proofs:

‖c− b‖22 − 2 〈c− b, a− b〉 = ‖c− a‖22 − ‖b− a‖22.

Proposition 11.1. For any a, b, c we have

Dφ(c|b)− 〈∇φ(a)−∇φ(b), c− b〉 = Dφ(c|a)−Dφ(b|a). (1)

The following figure gives a simple graphical intepretation of this equality.

a b c

Dφ(b|a)

Dφ(c|a)

Dφ(c|b)

φ′(b)(c− b)

Figure 2: Illustration of the equality (1) for a univariate function φ, where φ′(a) = 0.

11.2 Bregman proximal operator

We define the Bregman proximal operator for a function f to be:

proxφf (y) = argmin
x∈Rn

{f(x) +Dφ(x|y)} .

When φ(x) = ‖x‖22/2, this is the proximal operator we saw in the previous lecture. Under mild
conditions (e.g., int dom f ⊂ int domφ 6= ∅), we have:

x = proxφf (y) ⇐⇒ 0 ∈ ∂f(x) +∇φ(x)−∇φ(y). (2)

EXERCISE: Show that if f is lower semicontinuous and bounded below, then proxφf (y) is
well-defined.

Properties of the proximal operator We saw that the usual proximal operator is a (firmly)
nonexpansive operator. Here, the generalized prox operator satisfies a certain nonexpansive prop-
erty, but only wrt minimizers.

Proposition 11.2. Let x = proxφf (y). Then for any u, we have

f(u) +Dφ(u|y) ≥ f(x) +Dφ(x|y) +Dφ(u|x).
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Note that the inequality would be trivial if we did not have the last term Dφ(u|x).

Proof. From (2), we know that x = proxφf (y) if, and only if, ∇φ(y) − ∇φ(x) ∈ ∂f(x). Thus this
means that for any u we have:

f(u) ≥ f(x) + 〈∇φ(y)−∇φ(x), u− x〉

By the three-point identity (1) with a = x, b = u, c = y, we have 〈∇φ(y)−∇φ(x), u− x〉 =
Dφ(x|y) +Dφ(u|x)−Dφ(u|y), which gives the desired result.

11.3 Bregman proximal gradient algorithm

Consider the problem of minimizing F (x) = f(x) +h(x) over x ∈ Rn, where f : Rn → R̄ is smooth,
and h : Rn → R̄ has a simple prox. The Bregman proximal gradient method, takes the following
form:

xk+1 = argmin
x∈Rn

{t(f(xk) + 〈∇f(xk), x− xk〉+ h(x)) +Dφ(x|xk)} , (3)

where t > 0 is the step size. If Dφ(x|xk) = (1/2)‖x − xk‖22, then this precisely the iteration
xk+1 = proxth(xk − t∇f(xk)) that we saw in the last lecture. When h(x) = 0, this method is not
the usual gradient method.

Example: Consider the problem of minimizing f(x) on Rn+ (h(x) = 0). If we choose Dφ =
DKL the KL-divergence, then the iterates are defined by xk+1 = argminx≥0{tk 〈∇f(xk), x− xk〉+
DKL(x|xk)} which can be shown to be equal to

xk+1 = xk • exp(−tk∇f(xk))

where • denotes componentwise multiplication, and exp here is the componentwise exponential
function. This iteration is known as exponentiated gradient descent.

Convergence We have previously studied the convergence of the (standard) proximal gradient
method under the assumption that f is L-smooth. Recall that L-smoothness is equivalent to having
L‖x‖22− f(x) convex. It is thus natural to study the convergence of the Bregman gradient method
under the assumption that Lφ − f is convex. In fact, we can show that if Lφ − f is convex, then
the iterates of the Bregman proximal gradient method (3) with step size t = 1/L satisfy

F (xk)− F ∗ ≤
LDφ(x∗|x0)

k
. (4)

Note that this is precisely the same convergence result we obtained before, where the term ‖x∗−x0‖22
is now replaced by Dφ(x∗|x0).

Proof: The proof follows more or less the same line as the proofs we have seen before. The
assumption that Lφ− f is convex tells us that DLφ−f ≥ 0, which corresponds to

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+ LDφ(x+|x).

We substract f(u) from each side to get

f(x+)− f(u) ≤ f(x)− f(u) +
〈
∇f(x), x+ − x

〉
+ LDφ(x+|x)

(∗)
≤ 〈∇f(x), x− u〉+

〈
∇f(x), x+ − x

〉
+ LDφ(x+|x)

=
〈
∇f(x), x+ − u

〉
+ LDφ(x+|x),

(5)
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where in (*) we have used convexity of f . So far we haven’t used that x+ is computed from (3).
Using Prop. 11.2, with the function z 7→ t 〈∇f(x), z − x〉+ th(z), we get that

t
〈
∇f(x), x+ − u

〉
+ t(h(x+)− h(u)) ≤ Dφ(u|x)−Dφ(u|x+)−Dφ(x+|x).

Using t = 1/L, and plugging in (5) we finally reach

t(F (x+)− F (u)) ≤ Dφ(u|x)−Dφ(u|x+)

as desired. The rest of the proof is as usual: letting u = x we see that F (x+) ≤ F (x). Then we let
u = x∗, sum the inequalities from 0 to k − 1 to reach the desired inequality (4).

Remark 1. Another approach to proving convergence is to remark that since φ− tf is convex, the
iteration (3) can be written as:

xk+1 = proxφ−tft(f+h)(xk).

Using Prop 11.2 we get

t(F (x+)− F (u)) ≤ Dφ−tf (u|x)−Dφ−tf (u|x+).

Proceeding as usual, we get F (xk)− F ∗ ≤ LDφ−tf (x∗|x0)/k ≤ LDφ(x∗|x0)/k as desired.

Strongly convex case: For the standard proximal gradient, we saw that if f is m-strongly
convex (i.e., f − m‖ · ‖22/2 is convex), then convergence is linear with a rate of 1 − m/L. The
same can be proved here. Indeed, we can show that if f −mφ is convex, then the iterates (3) with
t = 1/L satisfy

Dφ(x∗|xk) ≤
(

1− m

L

)k
Dφ(x∗|x0).

The proof is a simple modification to the proof we just saw: in step (*) of (5), we write the equality
f(x) − f(u) = 〈∇f(x), x− u〉 − Df (u|x), and then, since f −mφ is convex, we upper bound the
second term using Df (u|x) ≥ mDφ(u|x). Continuing with the same steps as before, we eventually
get

t(F (x+)− F (u)) ≤ (1−mt)Dφ(u|x)−Dφ(u|x+).

With u = x∗, the left-hand side is nonnegative, and so we get Dφ(u|x+) ≤ (1−mt)Dφ(u|x) which
gives us the linear convergence rate.

Remark 2. The assumption Lφ−f convex was introduced in [BBT17] as the Lipschitz-like/Convexity
condition, also known as relative smoothness in [LFN18].
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