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13 Augmented Lagrangian, ADMM

We still consider the problem

min
x∈Rn
{f(x) + h(Ax)} = min

x,y
{f(x) + h(y) : y = Ax}

whose Lagrangian is L(x, y, z) = f(x) + h(y) + zT (Ax− y), and the dual function is

g(z) = min
x

{
f(x) + zTAx

}
+ min

y

{
h(y)− zT y

}
= −f∗(−AT z)− h∗(z).

(1)

The dual problem is thus:
max
z∈Rn

−f∗(−AT z)− h∗(z). (2)

Proximal gradient to dual If f is m-strongly convex then z 7→ f∗(−AT z) is smooth and its
gradient is ‖A‖2/m-Lipschitz. One can apply the proximal gradient method to the dual problem
(2). This gives the iteration rule:

z+ = proxth∗(z + tA∇f∗(−AT z)). (3)

where t > 0 is the step size. We can simplify the iteration rule using the definitions of ∇f∗ and of
prox. Indeed, we saw before that since f is strongly convex

∇f∗(y) = argmax
x

{
yTx− f(x)

}
= argmin

x

{
f(x)− yTx

}
.

Thus Equation (3) takes the form

x̂ = argmin
x

{
f(x) + zTAx

}
z+ = proxth∗(z + tAx̂).

We can further simplify the equations above using Moreau’s identity which tells us that proxφ∗(x) =
x − proxφ(x) for any lsc convex function φ. With φ = th∗ we get φ∗(y) = (th∗)∗(y) = th(y/t)
(check!). Also one can verify that proxth(·/t)(x) = tproxt−1h(x/t). At the end, after all simplifica-
tions, the proximal gradient method applied to the dual problem (2) takes the form:

Proximal gradient
applied to dual pb (2):


x̂ = argmin

x

{
f(x) + zTk Ax

}
ŷ = argmin

y

{
h(y)− zTk y +

t

2
‖Ax̂− y‖22

}
zk+1 = z + t(Ax̂− ŷ).

(4)

In the signal denoising example (where f(x) = ‖x − u‖22 and h(z) = ‖z‖1) note that x̂ and ŷ can
be computed easily with a closed-form expression.
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Comparison with dual ascent: It is instructive to compare (4) to a subgradient ascent method
applied to the dual problem (2). Using the expression of the dual function in (1) dual ascent takes
the form

Subgradient ascent
applied to dual pb (2):


x̂ = argmin

x

{
f(x) + zTk Ax

}
ŷ = argmin

y

{
h(y)− zTk y

}
zk+1 = z + tk(Ax̂− ŷ).

(5)

Unless f and h are both strongly convex, the dual function g(z) in (1) is not going to be smooth;
this means that the step sizes tk has to be decreasing, and in general the above subgradient ascent
is going to be very slow.

Augmented Lagrangian method It is also instructive to compare (4) with the augmented
Lagrangian method, which does not require any strong convexity assumption on f or h: observe
that the original problem can be written as

min
x,y

{
f(x) + h(y) +

t

2
‖Ax− y‖22 : Ax = y

}
where t > 0. The Lagrangian of this problem is

Lt(x, y, z) = f(x) + h(y) + zT (Ax− y) +
t

2
‖Ax− y‖22.

This is known as the augmented Lagrangian of the original problem. The dual function is

gt(z) = min
x,y

{
f(x) + h(y) + zT (Ax− y) +

t

2
‖Ax− y‖22

}
. (6)

Because of the quadratic term t
2‖Ax−y‖

2
2, one can show that g is (1/t)-smooth1, and that ∇gt(z) =

Ax̂ − ŷ where (x̂, ŷ) are minimizers in (6). The augmented Lagrangian method corresponds to a
gradient ascent on gt, i.e., it takes the form

Augmented Lagrangian
method :

(x̂, ŷ) = argmin
x,y

{
f(x) + h(y) + zTk (Ax− y) +

t

2
‖Ax− y‖22

}
zk+1 = z + t(Ax̂− ŷ).

(7)

EXERCISE: Prove that the augmented Lagrangian method above, corresponds to the proximal
point method applied to the dual problem (2), i.e., it corresponds to:

zk+1 = prox−tg(zk).

Alternating direction method of multipliers The problem with the dual proximal gradient
method, is that it requires the function f to be strongly convex. The problem with the augmented
Lagrangian method is that the variables (x, y) are coupled in (7). To remedy this, the ADMM
algorithm introduces a quadratic penalty in the definition of x̂ in (4). We get:

ADMM


xk+1 = argmin

x

{
f(x) + zTk Ax+

t

2
‖Ax− yk‖22

}
yk+1 = argmin

y

{
h(y)− zTk y +

t

2
‖Axk+1 − y‖22

}
zk+1 = zk + t(Axk+1 − yk+1).

(8)

1Indeed, note that by introducing v = Ax− y we can write gt(z) = minv {minx{f(x) + h(Ax− v)}+ (t/2)‖v‖22 +
zT v} = −ψ∗(−z) where ψ(v) = (t/2)‖v‖22 +minx(f(x) + h(Ax− v)) is t-strongly convex.
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Let’s check that a fixed point of ADMM is indeed an optimal solution of our problem: assume
(xk+1, yk+1, zk+1) = (xk, yk, zk) = (x̄, ȳ, z̄). Then we see from the last equation in (8) that Ax̄ = ȳ.
Furthermore, we get from the first equation in (8) that 0 ∈ ∂f(x̄) + AT z̄; and from the second
equation 0 ∈ ∂h(ȳ)− z̄ so that, summing up, we get 0 ∈ ∂f(x̄) +AT∂h(Ax̄), i.e., x̄ is a minimizer
of f(x) + h(Ax).

Douglas-Rachford The special case where A = I is known as the Douglas-Rachford algorithm.
In this case, and when t = 1, the iterates can be written as:

xk+1 = proxf (yk − zk)
yk+1 = proxh(xk+1 + zk)

zk+1 = zk + (xk+1 − yk+1).

EXERCISE: Prove that if we let wk+1 = xk+1 + zk, then the Douglas-Rachford algorithm is equiv-
alent to

wk+1 = proxf (2proxh(wk)− wk) + wk − proxh(wk).
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