Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

14 Douglas Rachford

The Douglas-Rachford method to minimize the sum of two convex functions f(x) + h(x) is given
by the following iterates:

T+l = PTOXf(yk — 2k)
Yk+1 = Proxy(Trp+1 + 2x) (1)
Zht1 = 2k F (Th1 — Yht1)-

It is not hard to show that if we let w11 = Tr11 + 2k, then the Douglas-Rachford algorithm is
equivalent to
wi 1 = T (wy,)

where T' is the Douglas-Rachford operator:
T(w) = prox (2 prox,(w) — w) + w — prox,(w). (2)
To prove the convergence of the DR algorithm, we will prove that T is a firmly nonezpansive map.

Definition 14.1. A map T : R" — R" is firmly nonexpansive if
IT(w) — T(w')|3 < (w—w',T(w) - T(w))  Yw,w €R"

We have already seen (lecture 10) that proximal operators of convex functions are firmly nonex-
pansive. This allows us to prove that the Douglas-Rachford operator in (2) is firmly nonexpansive.
Indeed, let w,w’ € R™ and let y = prox;,(w) and = = prox;(2y — w), so that T'(w) = z +w — y.
Since prox; and prox, are firmly nonexpansive, we have:

ly =13 <y—y,w—w)
lo -2l < (e — a2y —y/) — (w—u)).
Now we can write
IT(w) = T(@IF = llo — 2" +w —w' — (y =93
= llz = 2[5 + llw — w3 + ly — o/'I13
+2<x—x',w—w'> —2<x—az',y—y’> —2<y—y',w—w'>
<(o—aw—w) +lw—w 3 (y— o w— )
=((z+w-y)— @ +v —y)w-u)=(T(w) -TW),w-u).
EXERCISE: Show that 7" is firmly nonexpansive, if, and only if, 7' = (1/2)(I + U) where U is

a nonexpansive map.
Now we prove a general convergence result about firmly nonexpansive iterations.

Theorem 14.1. Assume T : R™ — R" is a firmly nonexpansive map that has at least one fixed

point w*. Then the iterates wiy1 = T(wy) converge to some fixed point of T, and furthermore

* (|2
. 2 < wo —wtlls
on fJwj = T(wy)llz < .



The following lemma is easy to verify.
Lemma 1. IfT is firmly nonexpansive, then G =1 —T' is also firmly nonexpansive.
Proof. We have ||Gw — Gu'||3 = |[w — w'||3 + |Tw — Tw'||3 — 2 (w — v, Tw — Tw') < |jw—w'|3 -
(w—w,Tw—Tw') = (w—w,Gw— Gu') as desired. O
We now prove the theorem.

Proof. Let w* be any fixed point of 7. Then for any w, we have
IT(w) = w*[|3 = lw = w*|3 < (w —w*, T(w) —w*) = [Jw - w3 3)
= (w —w*, ~G(w)) < —[|G(w)]]3

where we used the fact that G is firmly nonexpansive, and G(w*) = 0. Thus, summing these
inequalities and rearranging we get

k—1
D NG w3 < flwo — w*|f3.
i=0

Let pest ke = min{HG(wo)H%, ooy, G(wg—q ||%}, we see that

_

= lwo — w*||3
Tbest,k < E Z ”G(U&)H% < TQ

1=

and S0 Tpest p < [Jwo — w*||3/k-

It remains to show that (w;) converges to a fixed point of T. The inequality (3) shows that
||wi; —w*||2 is nonincreasing for any choice of fixed point of w* of T'; in particular (w;) is bounded
and so has a limit point w. Let’s show that w; — w. First note that since ||G(w;)||2 — 0, and that
G is continuous, we must have G(w) = 0, i.e., w is a fixed point for T'. It follows that the sequence
lw; — w||3 is nonincreasing, and has 0 as a limit point. Thus it must be that lim; ||w; — @||2 = 0,
ie., w; — . L]

Convergence of ADMM We have now established the convergence of the Douglas-Rachford
method for the minimization of f(z)+ h(z). Recall that the Douglas-Rachford method is a special
case of the ADMM where A = I. Recall that the general ADMM method to minimize f(z)+ h(Az)
has the form:

. t
oer = arguin { 7(0) + F Ao + 40— 3}
x

ADMM . 13 4
Yk+1 = argmin {h(y) —zly+ Az — yH%} )
y
21 = 2k + H(ATpt1 — Y1)

It turns out that one can directly obtain convergence of the ADMM method, by observing
that the algorithm above is precisely the Douglas-Rachford method applied to the dual problem of
minimizing f*(—ATz) + h*(z)! More precisely, if we apply the DR method to the dual problem,
we obtain the following iterates:

Tht1 = PrOXpeo_ a7 (Y — Zk)

Uk+1 = ProXp« (Tpq1 + Zk)

Zhp1 = 2k + (Thg1 — Jrt1)



These equations can be simplified using Moreau’s identity, and its generalization:
prox ., 1 (x) = & — Aargmin{ f(u) + (1/2)] Au — z/|3}. (5)
u
Using this identity, we get:

Trp1 =gk — F + Aargming {f(2) + (1/2) Az — (2 — 50)[13}
U1 = Tppr + 2 — argming {h(y) + (1/2)ly — (Zry1 + 215}
Zptr =2k + (g1 — Tkr1)-
By a suitable change of variables, the iterates can be shown to be equivalent to the ADMM method

of (4). Indeed, by calling x,1 the argmin in the first line, yx4+1 the argmin in the second line, and
2 = Uk, we see that the iterations above can be written as (check!)

w1 = argming { f(2) + (1/2)| Az — (ye — )3}

k1 = argming {A(y) + (1/2)lly — (Azpsr + )3}

Tpp1 = 2k + (ATpi1 — Yey1)-
It is easy to see that these are the same as (4) with ¢ = 1 (the case with general ¢ can be obtained
by appropriately scaling the functions f and h).

Historical note on the Douglas-Rachford algorithm The Douglas-Rachford algorithm
was invented in the 1950s [DR56] as a method to solve the heat equation, i.e.,

ou 9 9
Let A= —-V2 and B = —Vz, so that the equation can be written as uy = —Au — Bu. We assume

we have discretized along space variables x and y using finite differences; as such, with a suitable
ordering of the nodes, A and B are tridiagonal. If we use the backward Euler method to solve this
problem we end up with the following scheme:

u" = u" 4+ N(—Au"T — Byt

ie, u"™ = (I + M(A + B))"'u™ where A\ > 0 is the time step. Solving a linear system with
I + M(A + B) can be expensive, unlike solving linear systems with I + AA and I + AB which are
much easier because the latter are tridiagonal after suitable permutation of the nodes (different
for A and B). Splitting schemes have thus been developed to address this need. There are many
possible splittings one can do:

e One possibility for splitting is the forward backward splitting where we use forward Euler on
B, and backward Euler on A (or vice-versa):

"t = u" + N\(—Au"T — Bu™)
This only requires solving a linear system involving I + A\A.

e Another possibility, proposed by Peaceman-Rachford, is to alternate the roles of A and B in
forward-backward splitting, i.e.,

{un+l/2 = u” + A(—AU”JFI/Z _ B’U,n)

yntl = ynt1/2 + )\(_Aun-i-l/Q _ Bun-i—l)

This requires solving, at each time step, a linear system with 7 + AA and a linear system with
I+ )\B.



e The third one, proposed by Douglas-Rachford, proceeds as follows. Even though (I+AA+AB)
is difficult to invert, we can see that (I + XA+ AB + A\2AB) is actually easy to invert because
the latter is simply (I + AA)({ + AB). So this motivates us to consider the following altered
backward difference formula:

un+1 — + )\(—Au”"H _ Bun-ﬁ-l) + )\2AB(un _ un—i—l).

This reduces to (I +AA)(I +AB)u™*! = u™ + A2 ABu", which again only requires (I +\A)~*
and (I + AB)~1.

Extension to nonlinear operators The above applies to any positive linear operators A and
B, and not just to the Laplacian. In fact, these methods were shown to be convergent for nonlinear
mazimal monotone operators A, B by Lions and Mercier in [LM79]. The latter Douglas-Rachford
can be written as
un+1 — Tu"

where T = (I + AB)~ (I + AA) "1 (I + A\2AB). If we write I + \2AB = (I + AA)AB + I — AB, we
get
T=I+AB)"'[(I+AA)"Y(I—-AB)+ \B]

Call (I +AB) %" = u", then we get

V" = (I +XA)"Y(I = AB) + AB)(I + AB) 1"

-1 -1 -17 ,n (6)

=[I+XA)'QU+AB) =)+ 1—(I+AB)"']v™
where we used the fact that (I — AB)(I + AB)™! = 2(I + AB)™! — I, and AB(I + AB)™! =
I—(I+AB)™'. If A=9f and B = 0h, then (I + XA)~! = prox,; and (I + AB)~! = proxy,
and so the equation above is precisely the Douglas-Rachford iteration (2)! For a nice survey of
monotone operator methods in optimization, see [RB16].
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