
Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

14 Douglas Rachford

The Douglas-Rachford method to minimize the sum of two convex functions f(x) + h(x) is given
by the following iterates: 

xk+1 = proxf (yk − zk)
yk+1 = proxh(xk+1 + zk)

zk+1 = zk + (xk+1 − yk+1).

(1)

It is not hard to show that if we let wk+1 = xk+1 + zk, then the Douglas-Rachford algorithm is
equivalent to

wk+1 = T (wk)

where T is the Douglas-Rachford operator:

T (w) = proxf (2 proxh(w)− w) + w − proxh(w). (2)

To prove the convergence of the DR algorithm, we will prove that T is a firmly nonexpansive map.

Definition 14.1. A map T : Rn → Rn is firmly nonexpansive if

‖T (w)− T (w′)‖22 ≤
〈
w − w′, T (w)− T (w′)

〉
∀w,w′ ∈ Rn.

We have already seen (lecture 10) that proximal operators of convex functions are firmly nonex-
pansive. This allows us to prove that the Douglas-Rachford operator in (2) is firmly nonexpansive.
Indeed, let w,w′ ∈ Rn and let y = proxh(w) and x = proxf (2y − w), so that T (w) = x + w − y.
Since proxf and proxh are firmly nonexpansive, we have:{

‖y − y′‖22 ≤ 〈y − y′, w − w′〉
‖x− x′‖22 ≤ 〈x− x′, 2(y − y′)− (w − w′)〉 .

Now we can write

‖T (w)− T (w′)‖22 = ‖x− x′ + w − w′ − (y − y′)‖22
= ‖x− x′‖22 + ‖w − w′‖22 + ‖y − y′‖22

+ 2
〈
x− x′, w − w′

〉
− 2

〈
x− x′, y − y′

〉
− 2

〈
y − y′, w − w′

〉
≤
〈
x− x′, w − w′

〉
+ ‖w − w′‖22 −

〈
y − y′, w − w′

〉
=
〈
(x+ w − y)− (x′ + w′ − y′), w − w′

〉
=
〈
T (w)− T (w′), w − w′

〉
.

EXERCISE: Show that T is firmly nonexpansive, if, and only if, T = (1/2)(I + U) where U is
a nonexpansive map.

Now we prove a general convergence result about firmly nonexpansive iterations.

Theorem 14.1. Assume T : Rn → Rn is a firmly nonexpansive map that has at least one fixed
point w∗. Then the iterates wk+1 = T (wk) converge to some fixed point of T , and furthermore

min
0≤j≤k−1

‖wj − T (wj)‖22 ≤
‖w0 − w∗‖22

k
.

1



The following lemma is easy to verify.

Lemma 1. If T is firmly nonexpansive, then G = I − T is also firmly nonexpansive.

Proof. We have ‖Gw−Gw′‖22 = ‖w−w′‖22 + ‖Tw− Tw′‖22 − 2 〈w − w′, Tw − Tw′〉 ≤ ‖w−w′‖22 −
〈w − w′, Tw − Tw′〉 = 〈w − w′, Gw −Gw′〉 as desired.

We now prove the theorem.

Proof. Let w∗ be any fixed point of T . Then for any w, we have

‖T (w)− w∗‖22 − ‖w − w∗‖22 ≤ 〈w − w∗, T (w)− w∗〉 − ‖w − w∗‖22
= 〈w − w∗,−G(w)〉 ≤ −‖G(w)‖22

(3)

where we used the fact that G is firmly nonexpansive, and G(w∗) = 0. Thus, summing these
inequalities and rearranging we get

k−1∑
i=0

‖G(wi)‖22 ≤ ‖w0 − w∗‖22.

Let rbest,k = min{‖G(w0)‖22, . . . , G(wk−1)‖22}, we see that

rbest,k ≤
1

k

k−1∑
i=0

‖G(wi)‖22 ≤
‖w0 − w∗‖22

k
.

and so rbest,k ≤ ‖w0 − w∗‖22/k.
It remains to show that (wi) converges to a fixed point of T . The inequality (3) shows that

‖wi − w∗‖2 is nonincreasing for any choice of fixed point of w∗ of T ; in particular (wi) is bounded
and so has a limit point w̄. Let’s show that wi → w̄. First note that since ‖G(wi)‖2 → 0, and that
G is continuous, we must have G(w̄) = 0, i.e., w̄ is a fixed point for T . It follows that the sequence
‖wi − w̄‖22 is nonincreasing, and has 0 as a limit point. Thus it must be that limi ‖wi − w̄‖2 = 0,
i.e., wi → w̄.

Convergence of ADMM We have now established the convergence of the Douglas-Rachford
method for the minimization of f(x) +h(x). Recall that the Douglas-Rachford method is a special
case of the ADMM where A = I. Recall that the general ADMM method to minimize f(x)+h(Ax)
has the form:

ADMM


xk+1 = argmin

x

{
f(x) + zTk Ax+

t

2
‖Ax− yk‖22

}
yk+1 = argmin

y

{
h(y)− zTk y +

t

2
‖Axk+1 − y‖22

}
zk+1 = zk + t(Axk+1 − yk+1).

(4)

It turns out that one can directly obtain convergence of the ADMM method, by observing
that the algorithm above is precisely the Douglas-Rachford method applied to the dual problem of
minimizing f∗(−AT z) + h∗(z)! More precisely, if we apply the DR method to the dual problem,
we obtain the following iterates:

x̃k+1 = proxf∗◦−AT (ỹk − z̃k)
ỹk+1 = proxh∗(x̃k+1 + z̃k)

z̃k+1 = z̃k + (x̃k+1 − ỹk+1)

2



These equations can be simplified using Moreau’s identity, and its generalization:

proxf∗◦AT (x) = x−A argmin
u
{f(u) + (1/2)‖Au− x‖22}. (5)

Using this identity, we get:
x̃k+1 = ỹk − z̃k +A argminx

{
f(x) + (1/2)‖Ax− (z̃k − ỹk)‖22

}
ỹk+1 = x̃k+1 + z̃k − argminy

{
h(y) + (1/2)‖y − (x̃k+1 + z̃k)‖22

}
z̃k+1 = z̃k + (x̃k+1 − ỹk+1).

By a suitable change of variables, the iterates can be shown to be equivalent to the ADMM method
of (4). Indeed, by calling xk+1 the argmin in the first line, yk+1 the argmin in the second line, and
zk = ỹk, we see that the iterations above can be written as (check!)

xk+1 = argminx
{
f(x) + (1/2)‖Ax− (yk − zk)‖22

}
yk+1 = argminy

{
h(y) + (1/2)‖y − (Axk+1 + zk)‖22

}
xk+1 = zk + (Axk+1 − yk+1).

It is easy to see that these are the same as (4) with t = 1 (the case with general t can be obtained
by appropriately scaling the functions f and h).

Historical note on the Douglas-Rachford algorithm The Douglas-Rachford algorithm
was invented in the 1950s [DR56] as a method to solve the heat equation, i.e.,

∂u

∂t
= ∇2

xu+∇2
yu.

Let A = −∇2
x and B = −∇2

y, so that the equation can be written as ut = −Au−Bu. We assume
we have discretized along space variables x and y using finite differences; as such, with a suitable
ordering of the nodes, A and B are tridiagonal. If we use the backward Euler method to solve this
problem we end up with the following scheme:

un+1 = un + λ(−Aun+1 −Bun+1)

i.e., un+1 = (I + λ(A + B))−1un where λ > 0 is the time step. Solving a linear system with
I + λ(A + B) can be expensive, unlike solving linear systems with I + λA and I + λB which are
much easier because the latter are tridiagonal after suitable permutation of the nodes (different
for A and B). Splitting schemes have thus been developed to address this need. There are many
possible splittings one can do:

• One possibility for splitting is the forward backward splitting where we use forward Euler on
B, and backward Euler on A (or vice-versa):

un+1 = un + λ(−Aun+1 −Bun)

This only requires solving a linear system involving I + λA.

• Another possibility, proposed by Peaceman-Rachford, is to alternate the roles of A and B in
forward-backward splitting, i.e.,{

un+1/2 = un + λ(−Aun+1/2 −Bun)

un+1 = un+1/2 + λ(−Aun+1/2 −Bun+1)

This requires solving, at each time step, a linear system with I+λA and a linear system with
I + λB.

3



• The third one, proposed by Douglas-Rachford, proceeds as follows. Even though (I+λA+λB)
is difficult to invert, we can see that (I +λA+λB+λ2AB) is actually easy to invert because
the latter is simply (I + λA)(I + λB). So this motivates us to consider the following altered
backward difference formula:

un+1 = un + λ(−Aun+1 −Bun+1) + λ2AB(un − un+1)︸ ︷︷ ︸ .
This reduces to (I +λA)(I +λB)un+1 = un +λ2ABun, which again only requires (I +λA)−1

and (I + λB)−1.

Extension to nonlinear operators The above applies to any positive linear operators A and
B, and not just to the Laplacian. In fact, these methods were shown to be convergent for nonlinear
maximal monotone operators A,B by Lions and Mercier in [LM79]. The latter Douglas-Rachford
can be written as

un+1 = Tun

where T = (I + λB)−1(I + λA)−1(I + λ2AB). If we write I + λ2AB = (I + λA)λB + I − λB, we
get

T = (I + λB)−1
[
(I + λA)−1(I − λB) + λB

]
Call (I + λB)−1vn = un, then we get

vn+1 = ((I + λA)−1(I − λB) + λB)(I + λB)−1vn

=
[
(I + λA)−1(2(I + λB)−1 − I) + I − (I + λB)−1

]
vn.

(6)

where we used the fact that (I − λB)(I + λB)−1 = 2(I + λB)−1 − I, and λB(I + λB)−1 =
I − (I + λB)−1. If A = ∂f and B = ∂h, then (I + λA)−1 = proxλf and (I + λB)−1 = proxλh
and so the equation above is precisely the Douglas-Rachford iteration (2)! For a nice survey of
monotone operator methods in optimization, see [RB16].

References

[DR56] Jim Douglas and Henry H Rachford. On the numerical solution of heat conduction problems
in two and three space variables. Transactions of the American mathematical Society,
82(2):421–439, 1956. 3

[LM79] Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979. 4

[RB16] Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput.
Math, 15(1):3–43, 2016. 4

4


	Douglas Rachford

