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15 Newton’s method

So far we studied optimization algorithms that rely on first-order information of the objective
function only, i.e., gradients. Today we look at Newton’s method which relies on second derivatives.
Consider the unconstrained minimization problem:

min
x∈Rn

f(x) (1)

where f is a convex function that is twice differentiable. The Hessian of f at x is the n × n
symmetric matrix defined by:

∇2f(x) =

[
∂2f

∂xi∂xj
(x)

]
1≤i,j≤n

.

Since f is convex we know that ∇2f(x) is positive semidefinite for all x. We further assume that it
is nonsingular for all x. Newton’s method to solve (1) is described by the following iteration rule:

xk+1 = xk −∇2f(xk)−1∇f(xk). (2)

There are different ways to interpret the rule (2).

• Sequential quadratic approximation: Consider the second-order approximation of f around
the current point xk:

f(xk + h) ≈ f(xk) +∇f(xk)Th+
1

2
hT∇2f(xk)h.

Minimizing the right-hand side gives h = −∇2f(xk)−1∇f(xk). This means that xk+1 min-
imizes the second-order approximation of f at xk. In particular it implies that if f is a
quadratic function, then Newton’s method converges in one step.

• Gradient method in the local metric: For any point x ∈ Rn, since ∇2f(x) � 0 (positive
definite) we can consider the metric (i.e., inner product)

〈u, v〉x = uT∇2f(x)v

for any u, v ∈ Rn. The gradient of f at x, in the local metric 〈·, ·〉x is the vector g such that
the following identity is true:

f(x+ h) = f(x) + 〈g, h〉x + o(h).

It is not hard to verify that g = ∇2f(x)−1∇f(x). This means that the Newton iteration (2)
is nothing but a gradient descent method (with unit step size), where the gradient is taken
with respect to the local metric 〈·, ·〉x.

• Newton-Raphson method for solving ∇f(x) = 0: The Newton-Raphson for solving a system
of nonlinear equations F (x) = 0 were F : Rn → Rn is defined by the iteration rule: xk+1 =
xk − JF (xk)−1F (xk), where JF (xk) is the Jacobian of F at xk. This iteration rule is based
on a successive linearization of F . It is not hard to see that Newton’s method (2) is a
Newton-Raphson method for the system of nonlinear equations ∇f(x) = 0.
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Remarks:

• Invariance under linear transformation: Let A ∈ Rn×n be an invertible matrix and consider
the change of coordinates y = Ax. Let f̃(y) = f(A−1y) and consider Newton’s method
applied to f̃ . Let (xk)k≥0 be the iterates of Newton’s method applied to f , and let (yk)k≥0
be the iterates of Newton’s method applied to f̃ starting from y0 = Ax0. Using the fact that
∇f̃(y) = A−T∇f(A−1y) and ∇2f̃(y) = A−T∇f(A−1y)A−1, it is not hard to check that we
have, for all k ≥ 1, yk = Axk. In other words, the behavior of Newton’s method does not
depend on the choice of coordinates made.

This independence property is not true for other algorithms we saw before, e.g., the gradient
method. Recall that if we apply the gradient method to f(x) = (x21 + x22)/2 with exact line
search we converge to x∗ = (0, 0) in one iteration from any starting point; whereas if we apply
it to f̃(y) = (y21 + γy22)/2 with γ 6= 1 this is not the case.

• Iteration complexity of Newton’s method: Each iteration of Newton’s method requires in-
verting the Hessian ∇2f(x) (or solving ∇2f(x)h = ∇f(x)). Solving a generic linear system
of size n × n requires ≈ n3 floating point operations. This can be prohibitive for very large
n. Note that the iteration complexity of the gradient method is simply O(n).

One characteristic of Newton’s method is that it is very fast if you start close enough to the
optimal solution. This is the object of the next theorem. Note that ‖∇f(x)‖2 is used as a measure
proximity to the optimal solution.

Theorem 15.1 (Quadratic convergence of Newton’s method). Let f be a m-strongly convex
function that is C2 such that ‖∇2f(x) − ∇2f(y)‖2 ≤ M‖x − y‖2.1 Given x ∈ Rn let x+ =
x− (∇2f(x))−1∇f(x). Then

M

2m2
‖∇f(x+)‖2 ≤

(
M

2m2
‖∇f(x)‖2

)2

.

Proof. Let h = −∇2f(x)−1∇f(x) be the Newton step. Then we can write

∇f(x+) = ∇f(x) +

∫ 1

0
∇2f(x+ th)hdt

=

∫ 1

0
(∇2f(x+ th)−∇2f(x))hdt

where we used the fact that ∇f(x) = −∇2f(x)h. Thus

‖∇f(x+)‖2 ≤
∫ 1

0
‖(∇2f(x+ th)−∇2f(x))h‖2dt

≤
∫ 1

0
Mt‖h‖22dt =

M

2
‖h‖22 =

M

2
‖∇2f(x)−1∇f(x)‖22 ≤

M

2m2
‖∇f(x)‖22

where in the last inequality we used ∇2f(x) � mI.

Let rk = M
2m2 ‖∇f(xk)‖2. The theorem above tells us that rk+1 ≤ r2k. This implies that rk ≤ r2

k

0 .
If r0 < 1 then rk → 0 at a very fast rate. For example if r0 = 1/10, we get:

r0 = 0.1, r1 = 0.01, r2 = 0.0001, r3 = 0.00000001, ...

This is called quadratic convergence.

1For a matrix H we let ‖H‖2 = sup‖x‖2=1 ‖Hx‖2 be the operator norm of H
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Remark 1. Using strong convexity one can get a bound on f(xk) − f∗ in terms of ‖∇f(xk)‖2.
Indeed, one can prove that

f(xk)− f∗ ≤ 1

2m
‖∇f(xk)‖22. (3)

(Write f(xk)−f∗ = f(xk)−min f ≤ f(xk)−minh

{
f(xk) +∇f(xk)Th+ m

2 ‖h‖
2
2

}
= 1

2m‖∇f(xk)‖22.)
This shows that if ‖∇f(xk)‖2 converges to 0 at a quadratic convergence rate, then so does f(xk)−f∗.

It can be shown that, outside the region of quadratic convergence, Newton’s method with a
non-unit step size achieves steady progress, i.e.,

f(xk+1)− f(xk) ≤ −γ

for some positive γ > 0, assuming that ‖∇f(xk)‖2 ≥ β. See Exercise sheet 3.
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