
Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

2 Review of convexity

2.1 Convex sets

Definition 2.1. A set C ⊂ Rn is convex if for any x, y ∈ C and λ ∈ [0, 1], λx+ (1− λ)y ∈ C.

Proposition 2.1. If C is a convex set, and A : Rn → Rm is a linear map, then A(C) is convex.
If (Cj)j∈J is a collection of convex sets, then C = ∩j∈JCj is convex.

Examples:
A halfspace is a set of the form {x ∈ Rn : 〈a, x〉 ≤ b} where a 6= 0,

〈a, x〉 = aTx =
n∑

i=1

aixi

is the Euclidean inner product.
An intersection of (any number of) halfspaces is a convex set. If C is an intersection of a finite
number of halfspaces it is called a convex polyhedron.
It turns out that any closed convex set can be written as an intersection of halfspaces! This can be
proved using the following fundamental fact about convex sets.

Theorem 2.1 (Separating hyperplane theorem). Let C ⊂ Rn be a convex set, and let y /∈ C. Then
there is a ∈ Rn \ {0} and b ∈ R such that

〈a, x〉 ≤ b ∀x ∈ C and 〈a, y〉 ≥ b.

Proof. We give the proof when C is closed. The general case is left as an exercise. If C is closed
we can define the projection map on C, namely pC(y) := min{‖y−x‖2 : x ∈ C} is well defined and
satisfies 〈y − pC(y), x− pC(y)〉 ≤ 0 for any x ∈ C. Let a = y − pC(y) and b = 〈a, pC(y)〉+ 1

2‖a‖
2
2.

Note that 〈a, y〉 − b = ‖a‖22 − 1
2‖a‖

2
2 > 0. Also for any x ∈ C we have 〈a, x〉 − b = 〈y − pC(y), x−

pC(y)〉 − 1
2‖a‖

2
2 < 0 which is what we wanted.

EXERCISE: Use theorem above to prove that if C is a closed convex set, then C is equal to
the intersection of halfspaces that contain it.

Supporting hyperplane: The result above can be used to prove the existence of supporting
hyperplanes. If C is a closed convex set, and y ∈ C \ intC, then there is a hyperplane that supports
C at y, i.e., there is a ∈ Rn \ {0} and b ∈ Rn such that 〈a, y〉 = b and 〈a, x〉 ≤ b for all x ∈ C.

2.2 Convex functions

Let R̄ = R ∪ {+∞}.

Definition 2.2. A function f : Rn → R̄ is convex for any x, y ∈ Rn and λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1)
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The domain of f is the set of x where f(x) is finite: dom(f) = {x ∈ Rn : f(x) < ∞}. Note that
dom(f) is a convex set by (1).

The indicator function of a convex set C ⊂ Rn is

IC(x) =

{
0 if x ∈ C
+∞ else.

If f : C → R is a convex function defined on a convex set C, then we can always think of f as
an (extended-valued) convex function Rn → R̄, by considering f + IC which takes the value f(x)
for x ∈ C, and +∞ otherwise.

The epigraph of a convex function f is defined as

epi(f) = {(x, t) ∈ Rn × R : f(x) ≤ t}.

It is easy to see that f is convex if, and only if, epi(f) is a convex set.
Observe that f : Rn → R̄ is convex if, and only if, its restriction to any one-dimensional line

is convex, i.e., for any x ∈ dom(f) and any h ∈ Rn, the function t 7→ f(x + th) is convex on the
interval {t ∈ R : x+th ∈ dom(f)}. This reduces the problem of proving convexity of a multivariate
function, to that of univariate functions.

EXERCISE: Use this to show that the function X ∈ Sn
++ 7→ − log detX is convex on the set

Sn
++ of positive definite matrices.

Recall that a univariate differentiable function f : R → R is convex if, and only if, f ′ is
nondecreasing. When f is twice differentiable this is equivalent to f ′′ ≥ 0.

The following proposition gives another useful method for proving convexity.

Proposition 2.2. Let (fj)j∈J be a collection of convex functions defined on Rn. Then f(x) =
supj∈J fj(x) is convex.

EXERCISE: Use the above proposition to show that f : Rn → R defined by f(x) = sum of k
largest components of x, is a convex function.

EXERCISE (Pointwise infimum of a jointly convex function is convex): Let g : Rn × Rm → R
be a convex function, and let f(x) = infy∈Rm g(x, y). Prove that f is convex.

EXERCISE: Let f : R → R be a function defined on the real line. For a 6= b, let f [a, b] =
f(b)−f(a)

b−a be the first order finite difference, and for a, b, c distinct, let f [a, b, c] = (f [a, b]−f [b, c])/(a−
c) be the second order finite differences. Show that f is convex if, and only if, f [a, b, c] ≥ 0 for all
a, b, c ∈ dom f .

Differentiable functions A function f : Rn → R̄ is differentiable at x ∈ int dom(f) if there is
a vector, denoted ∇f(x) and called the gradient of f at x, s.t.

f(x+ h) = f(x) + 〈∇f(x), h〉+ o(‖h‖), (h→ 0).

Note that ∇f(x) = (∂f/∂x1(x), . . . , ∂f/∂xn(x)).

Proposition 2.3. If f : Rn → R̄ is convex and differentiable at x, then for any y ∈ Rn

f(y) ≥ f(x) + 〈∇f(x), y − x〉 . (2)

Conversely, if f is differentiable everywhere, and (2) holds for all x, y ∈ dom(f) then f is convex.
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Proof. Let h = y−x. Convexity tells us that f(x) + t 〈∇f(x), h〉+ o(t) = f(x+ th) ≤ (1− t)f(x) +
tf(y). Rearranging, and dividing by t gives us f(y) ≥ f(x) + 〈∇f(x), h〉 + o(1) which yields the
desired inequality in the limit t→ 0.

For the converse, let x, y ∈ dom(f) and let t ∈ [0, 1]. We show that f(z) ≤ (1− t)f(x) + tf(y)
where z = (1− t)x+ ty. We have both inequalities:

f(x) ≥ f(z) + 〈∇f(z), x− z〉
f(y) ≥ f(z) + 〈∇f(z), y − z〉 .

Taking the (1− t, t) linear combination of both inequalities, and using the fact that x−z = t(x−y)
and y − z = (1− t)(y − x) we get (1− t)f(x) + tf(y) ≥ f(z) as desired.

Second derivatives We say that f : Rn → R̄ is twice differentiable at x if

f(x+ h) = f(x) + 〈∇f(x), h〉+
1

2

〈
h,∇2f(x)h

〉
+ o(‖h‖2), (h→ 0).

for some n× n symmetric matrix ∇2f(x), called the Hessian of f at x. Note that

[∇2f(x)]ij =
∂2f

∂xi∂xj
(x).

Recall that a n × n symmetric matrix A is positive semidefinite if 〈x,Ax〉 ≥ 0 for all x ∈ Rn;
equivalently, if all the eigenvalues of A are nonnegative. A matrix is positive definite if 〈x,Ax〉 > 0
for all x ∈ Rn \ {0}, or equivalently if all the eigenvalues of A are positive.

Proposition 2.4. If f : Rn → R̄ is convex and twice differentiable at some x ∈ dom(f), then
∇2f(x) � 0.

Conversely, if f is twice differentiable for all x ∈ dom(f), and ∇2f(x) � 0 for all x ∈ dom(f),
then f is convex.

Proof. For any direction h, let φ(t) = f(x + th) and note that φ is convex. Since f is twice
differentiable, φ is twice-differentiable at t = 0 with φ′′(0) =

〈
h,∇2f(x)h

〉
≥ 0, by convexity of φ.

This is true for all h, and so ∇2f(x) � 0.
Conversely, assume ∇2f(x) � 0 for all x ∈ dom(f). For x ∈ dom(f) and a direction h, let

φ(t) = f(x + th). Since f is twice differentiable everywhere, the same is true for φ, and we have
φ′′(t) =

〈
h,∇2f(x+ th)h

〉
≥ 0 since ∇2f � 0. Thus φ is convex. This is true for all x, h and so f

is convex.

2.3 Some quantitative aspects

Recall that if ‖ · ‖ is a norm on Rn, then the dual norm is defined by

‖y‖∗ = sup
‖x‖=1

〈y, x〉 .

In particular we have the generalized Cauchy-Schwarz inequality

〈x, y〉 ≤ ‖x‖‖y‖∗

for any x, y ∈ Rn.
EXERCISE: Show that the dual norm of the Euclidean norm ‖x‖2 =

√
〈x, x〉 is the Euclidean

norm. More generally show the dual of the p-norm ‖x‖p = (
∑

i |xi|p)1/p is the q norm where
1/p+ 1/q = 1.
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L-smoothness We say that a differentiable function f : Rn → R̄ is L-smooth with respect to a
norm ‖ · ‖, if for any x, y ∈ int dom(f),

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, (3)

where ‖ · ‖∗ is the dual norm to ‖ · ‖.
(We will sometimes omit the reference to the norm, in which case this means we work with the

Euclidean norm.)
The following proposition gives an equivalent characterization of L-smoothness for convex func-

tions.

Proposition 2.5. (i) If f is L-smooth, then for any x ∈ int dom(f) and y ∈ dom(f),

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2. (4)

(ii) Conversely, if f is convex and differentiable on dom(f) and (4) holds for all x, y ∈ dom(f)
then ∇f satisfies the Lipschitz assumption (3).
(iii) If f is convex and twice differentiable on dom(f), then L-smoothness is equivalent to〈

h,∇2f(x)h
〉
≤ L‖h‖2

for all x ∈ dom(f) and h ∈ Rn.

Proof. (i) Let h = y − x and φ(t) = f(x + th) − (f(x) + t 〈∇f(x), h〉). Then φ is differentiable
and φ′(t) = 〈∇f(x+ th)−∇f(x), h〉 ≤ ‖∇f(x + th) − ∇f(x)‖∗‖h‖ ≤ Lt‖h‖2 where we used the
Lipschitz assumption (3). Thus it follows that φ(1) = φ(0) +

∫ 1
0 φ
′(t)dt ≤ L/2‖h‖2 which gives

precisely the desired inequality (4).

Strong convexity We say that f is m-strongly convex (with respect to the norm ‖ · ‖) if for any
x, y ∈ dom(f), and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖2. (5)

The following proposition gives an equivalent characterization of strong convexity.

Proposition 2.6. (i) Let f : Rn → R̄ be m-strongly convex. If f is differentiable at x, then for
any y ∈ dom(f) we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2. (6)

(ii) Conversely if f is differentiable on dom(f) and satisfies the above for all x, y ∈ dom(f), then
it is m-strongly convex.
(iii) If f is twice differentiable on its domain, then strong convexity is equivalent to

〈
h,∇2f(x)h

〉
≥

m‖h‖2 for all x ∈ dom(f) and h ∈ Rn.

Proof. (i) Let h = y − x. Strong convexity tells us that f(x) + t 〈∇f(x), h〉 + o(t) = f(x + th) ≤
(1 − t)f(x) + tf(y) − (m/2)t(1 − t)‖h‖2. Rearranging, and dividing by t gives us f(y) ≥ f(x) +
〈∇f(x), h〉+ (m/2)(1− t)‖h‖2 + o(1) which yields the desired inequality in the limit t→ 0.

(ii) Conversely, assume (6) holds for all x, y ∈ dom(f). Then using the same argument as the
proof of Proposition 2.3 we get that (5) holds.
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(iii) Assume now that f is twice differentiable at x. Let φ(t) = f(x+th)−(f(x)+t 〈∇f(x), h〉+
(m/2)t2‖h‖2). Strong convexity tells us that φ(t) ≥ 0. Furthermore φ(0) = 0. Thus, nec-
essarily φ′′(0) ≥ 0, i.e.,

〈
h,∇2f(x)h

〉
≥ m‖h‖2. Conversely, assume

〈
h,∇2f(z)h

〉
≥ 0 for all

z ∈ dom(f), and all h. Then, using the same definition as φ above (with h = y − x), we
have φ′′(t) =

〈
h,∇2f(x+ th)h

〉
− m‖h‖2 ≥ 0. Thus this means that φ′ is increasing, and since

φ(0) = φ′(0) = 0, this means that φ(1) ≥ 0, i.e., that (6) holds.

Remark 1. When considering the Euclidean norm, we see that f is L-smooth if, and only if,
∇2f(x) � LI, i.e., LI − ∇2f(x) is positive semidefinite, i.e., all the eigenvalues of f are ≤ L.
Similarly, a function f is strongly convex if, and only if, ∇2f(x) � mI, i.e., all the eigenvalues of
∇2f(x) are ≥ m.

To summarize, if a function f is L-smooth, and m-strongly convex, then we can find, at any
point x ∈ int dom(f) quadratic lower and upper bounds on f :

f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2︸ ︷︷ ︸

strong convexity

≤ f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2︸ ︷︷ ︸

L-smoothness

5


	Review of convexity
	Convex sets
	Convex functions
	Some quantitative aspects


