3 Gradient method

In this lecture we are interested in minimizing a smooth convex function f on \mathbb{R}^n :

$$f^* = \min_{x \in \mathbb{R}^n} f(x).$$

We assume the minimum is finite and attained at some x^* . The gradient method we study has the form: Starting with any $x_0 \in \mathbb{R}^n$, iterate:

$$x_{k+1} = x_k - t_k \nabla f(x)$$

where t_k is the step size. See below for strategies to choose t_k . We now state a convergence result for the gradient method.

Theorem 3.1 (Convergence of gradient method). Assuming f is convex and has L-Lipschitz continuous gradient (wrt $\|\cdot\|_2$ norm), and assuming the step size is constant with $t_k = t \in (0, 1/L]$, we have $f(x_k) - f^* \leq \frac{1}{2tk} \|x_0 - x^*\|_2^2$ for all $k \geq 1$.

The theorem tells us that to reach accuracy ϵ , it suffices to run the gradient method for $k = \frac{\|x_0 - x^*\|_2^2}{2t} \cdot \frac{1}{\epsilon}$.

Proof. For any $x \in \mathbb{R}^n$ we denote $x^+ = x - t\nabla f(x)$. By Lipschitz property of ∇f we know that

$$f(x^+) \le f(x) + \langle \nabla f(x), x^+ - x \rangle + \frac{L}{2} ||x^+ - x||_2^2$$

Now since $\nabla f(x) = -\frac{1}{t}(x^+ - x)$ we get

$$f(x^{+}) \leq f(x) - \frac{1}{t} \|x^{+} - x\|_{2}^{2} + \frac{L}{2} \|x^{+} - x\|_{2}^{2}$$

= $f(x) - \frac{1}{t} \left(1 - \frac{Lt}{2}\right) \|x^{+} - x\|_{2}^{2} \leq f(x) - \frac{1}{2t} \|x^{+} - x\|_{2}^{2}$ (1)

where in the last inequality we used the fact that $0 < t \le 1/L$. Inequality (1) already tells us that the gradient method with $0 < t \le 1/L$ is a *descent* method, i.e., the value of f decreases at each iteration.

Our goal is to analyze the accuracy $f(x_k) - f^*$ as the algorithm progresses. Convexity of f immediately tells us that $f(x) - f^* \leq \langle \nabla f(x), x - x^* \rangle$. We combine this with inequality (1) above to understand how $f(x^+) - f^*$ evolves:

$$f(x^{+}) - f^{*} \leq f(x) - (1/2t) ||x^{+} - x||_{2}^{2} - f^{*}$$

$$\leq \langle \nabla f(x), x - x^{*} \rangle - (1/2t) ||x^{+} - x||_{2}^{2}$$

$$= -\frac{1}{2t} \left[||x^{+} - x||_{2}^{2} - 2 \langle x^{+} - x, x^{*} - x \rangle \right]$$

where in the last equality we used the fact that $\nabla f(x) = -(1/t)(x^+ - x)$. Using the identity $||a||_2^2 - 2\langle a,b\rangle = ||a-b||_2^2 - ||b||_2^2$ note that the right-hand side above is equal to $-\frac{1}{2t} \left[||x^+ - x^*||_2^2 - ||x - x^*||_2^2 \right]$. We have thus proved for any *i*:

$$f(x_{i+1}) - f^* \le \frac{1}{2t} \left[\|x_i - x^*\|_2^2 - \|x_{i+1} - x^*\|_2^2 \right].$$

We sum this inequality for $i = 0, \ldots, k - 1$ to get

$$\sum_{i=0}^{k-1} (f(x_{i+1}) - f^*) \le \frac{1}{2t} \left[\|x_0 - x^*\|_2^2 - \|x_k - x^*\|_2^2 \right] \le \frac{1}{2t} \|x_0 - x^*\|_2^2$$

Now since the function value decreases at each step we have $f(x_k) \leq f(x_{i+1})$ for all i = 0, ..., k-1and so

$$f(x_k) - f^* \le \frac{1}{k} \sum_{i=0}^{k-1} (f(x_{i+1}) - f^*) \le \frac{1}{2kt} \|x_0 - x^*\|_2^2.$$

Remark 1. Nowhere in the proof did we actually use that x^* is a minimizer of f, and f^* is the minimum value! In fact, the proof gives an upper bound on $f(x_k) - f(u)$ for any choice of $u \in \mathbb{R}^n$. It's just that $f(x_k) - f(u)$ is not necessarily nonnegative so the theorem in this case only tells us that, "in the limit", $f(x_k) - f(u)$ will become ≤ 0 .

Line search In practice, we don't usually keep the step size t constant, but we operate a so-called *line search*. There are two main strategies for line search:

- Exact line search: at iteration k, search for the value of t > 0 that minimizes $f(x_k t\nabla f(x_k))$. This is a one-dimensional minimization problem. Finding the exact minimum can be expensive, and so often it is enough to use:
- Backtracking line search: starting from large enough $t \leftarrow \hat{t}$ we keep decreasing t by $t \leftarrow \beta t$ for some $0 < \beta < 1$ until we satisfy a "sufficient-decrease" condition (typically called Armijo condition)

$$f(x_k - t\nabla f(x_k)) \le f(x_k) - \alpha t \|\nabla f(x_k)\|_2^2$$

where α is a chosen constant $\in (0, 1)$, say $\alpha = 1/2$. Note that taking $\alpha = 0$ just asks for a t that decreases the value of f.

Analysis for strongly convex functions For strongly convex functions, the gradient method has a linear convergence rate.

Theorem 3.2. Assume f is m-strongly convex and has L-Lipschitz continuous gradient with respect to the Euclidean norm $\|\cdot\|_2$. Then gradient method with constant step size t = 2/(m+L) produces iterates (x_k) that satisfy

$$\|x_k - x^*\|_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k \|x_0 - x^*\|_2 \quad and \quad f(x_k) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|x_0 - x^*\|_2^2 \tag{2}$$

where $\kappa = L/m \ge 1$.

Theorem above tells us that if we want to reach accuracy ϵ on $f(x_k) - f^*$, it suffices to run the gradient method for $k \gtrsim \frac{L}{m} \log\left(\frac{1}{\epsilon}\right)$ iterations.

Proof. We are going to assume that f is twice differentiable for convenience (there are proofs that do not require this assumption). Also note that the bound on $f(x_k) - f^*$ in (2) follows directly from the bound on $||x_k - x^*||_2$ since, by our smoothness assumption on f we have

$$f(x_k) - f(x^*) \le \langle f(x^*), x_k - x^* \rangle + \frac{L}{2} \|x_k - x^*\|_2^2 = \frac{L}{2} \|x_k - x^*\|_2^2$$

We thus focus on proving the bound on $||x_k - x^*||_2$. By Taylor formula applied to ∇f we know that

$$\nabla f(x) = \underbrace{\nabla f(x^*)}_{=0} + \int_0^1 \nabla^2 f(x^* + \alpha(x - x^*))(x - x^*) d\alpha = M(x - x^*),$$

where $M = \int_0^1 \nabla^2 f(x^* + \alpha(x - x^*)) d\alpha$ is a symmetric matrix. Recalling that $x^+ = x - t \nabla f(x)$, it thus follows that

$$||x^{+} - x^{*}||_{2} = ||(I - tM)(x - x^{*})||_{2} \le ||I - tM||_{2}||x - x^{*}||_{2}$$

It suffices now to analyze the eigenvalues of I - tM. Our assumption on f tells us that $mI \leq \nabla^2 f(y) \leq LI$ for all y, and so, in particular all the eigenvalues of M are in [m, L]. Thus the eigenvalues of I - tM are all in [1 - tL, 1 - tm] and the spectral norm of I - tM is $\gamma = \max\{|1 - tL|, |1 - tm|\}$. The best choice of t is when 1 - tL = -(1 - tm) which gives $t = \frac{2}{m+L}$ and then $\gamma = \frac{L-m}{L+m} = \frac{\kappa-1}{\kappa+1}$ where $\kappa = L/m$. It then follows that $||x_k - x^*||_2 \leq \left(\frac{\kappa-1}{\kappa+1}\right)^k ||x_0 - x^*||_2$.

Illustration

• Consider the gradient method applied to the function $f(x) = \frac{1}{2} ||Ax - b||_2^2$ with $A \in \mathbb{R}^{N \times n}$ and N > n, and A is full rank. We have $\nabla f(x) = A^T(Ax - b)$ and $\nabla^2 f(x) = A^T A$. We see that f is m-strongly convex and L-smooth with $m = \lambda_{\min}(A^T A) > 0$ (since A is full column rank) and $L = \lambda_{\max}(A^T A)$. Figure below shows the convergence of the gradient method to the optimal value f^* (N = 400, n = 200). We observe a linear convergence rate.

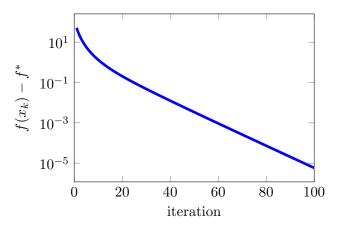


Figure 1: Gradient method for $f(x) = (1/2) ||Ax - b||_2^2$ where $A \in \mathbb{R}^{N \times n}$ is full column rank. We observe linear convergence.

• Consider now the function $f(x) = \sum_{i=1}^{N} \log \left(1 + e^{a_i^T x + b_i}\right)$. This function is *not* strongly convex (note that $\log(1 + e^t) \approx t$ for t large). The plot below shows the gradient method, and we clearly see a sublinear convergence rate.

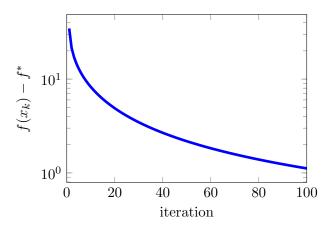


Figure 2: Gradient method for $f(x) = \sum_{i=1}^{N} \log \left(1 + e^{a_i^T x + b_i}\right)$. We observe a sublinear rate of convergence. Note that the function f is *not* strongly convex.