Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

3 Gradient method

In this lecture we are interested in minimizing a smooth convex function f on R":

f* = min f(x).

z€R™

We assume the minimum is finite and attained at some z*. The gradient method we study has the
form: Starting with any zo € R", iterate:

Tpy1 = o — 4V f(2)

where tj is the step size. See below for strategies to choose t;. We now state a convergence result
for the gradient method.

Theorem 3.1 (Convergence of gradient method). Assuming f is convex and has L-Lipschitz con-
tinuous gradient (wrt || - |2 norm), and assuming the step size is constant with tp =t € (0,1/L],
we have f(zy) — f* < 5i||wo — 2*||3 for all k > 1.

The theorem tells us that to reach accuracy e, it suffices to run the gradient method for k =
llzo—=*13 1
2t €’

Proof. For any x € R" we denote x7 = x — tV f(x). By Lipschitz property of Vf we know that
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Now since Vf(z) = —}(z7 — z) we get
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where in the last inequality we used the fact that 0 < ¢ < 1/L. Inequality (1) already tells us that
the gradient method with 0 < ¢t < 1/L is a descent method, i.e., the value of f decreases at each
iteration.

Our goal is to analyze the accuracy f(zp) — f* as the algorithm progresses. Convexity of f
immediately tells us that f(z) — f* < (Vf(z),z — 2*). We combine this with inequality (1) above
to understand how f(z™) — f* evolves:
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where in the last equality we used the fact that Vf(z) = —(1/t)(x* — ). Using the identity ||al|3 —
2 (a,b) = |la—b||3—|b||3 note that the right-hand side above is equal to — 4 ||z — z*[|3 — ||z — 2*||3].
We have thus proved for any ¢:

f($i+1) - f"

1
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We sum this inequality for ¢ = 0,...,k — 1 to get

k—1
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Now since the function value decreases at each step we have f(x) < f(xjy1) foralli=0,...,k—1
and so
=
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Remark 1. Nowhere in the proof did we actually use that x* is a minimizer of f, and f* is the
minimum value! In fact, the proof gives an upper bound on f(x)— f(u) for any choice of u € R™.
It’s just that f(xy) — f(u) is not necessarily nonnegative so the theorem in this case only tells us
that, “in the limit”, f(xr) — f(u) will become < 0.

Line search In practice, we don’t usually keep the step size ¢ constant, but we operate a so-called
line search. There are two main strategies for line search:

e Exact line search: at iteration k, search for the value of ¢ > 0 that minimizes f(xy —tV f(z)).
This is a one-dimensional minimization problem. Finding the exact minimum can be expen-
sive, and so often it is enough to use:

e Backtracking line search: starting from large enough ¢ < ¢ we keep decreasing t by ¢ < St
for some 0 < 8 < 1 until we satisfy a “sufficient-decrease” condition (typically called Armijo
condition)

flay =tV f(xr) < flar) — at||Vf ()3

where « is a chosen constant € (0,1), say a = 1/2. Note that taking o = 0 just asks for a ¢
that decreases the value of f.

Analysis for strongly convex functions For strongly convex functions, the gradient method
has a linear convergence rate.

Theorem 3.2. Assume f is m-strongly convex and has L-Lipschitz continuous gradient with respect
to the Euclidean norm || - ||2. Then gradient method with constant step size t = 2/(m+ L) produces
iterates (xy) that satisfy
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where k = L/m > 1.



Theorem above tells us that if we want to reach accuracy € on f(zy) — f*, it suffices to run the
gradient method for k 2 % log (%) iterations.

Proof. We are going to assume that f is twice differentiable for convenience (there are proofs that
do not require this assumption). Also note that the bound on f(zx) — f* in (2) follows directly
from the bound on ||z — 2*||2 since, by our smoothness assumption on f we have

Flaw) — F&°) < (F),mx— ) + 5 llow — "3 = i — 2*3

We thus focus on proving the bound on ||z —2*||2. By Taylor formula applied to V f we know that

1
Vf(z) = Vi) + /0 V2f(a* +a(z — 2%))( — ¢*)da = M(z — 2,

where M = fol V2f(z* + a(z — 2*))da is a symmetric matrix. Recalling that * =z — tV f(z), it
thus follows that

27 = a2 = (I = tM) (2 — 2")|l, < |1 — tM[|a[|lz — ="

It suffices now to analyze the eigenvalues of I — tM. Our assumption on f tells us that ml =
V2f(y) = LI for all y, and so, in particular all the eigenvalues of M are in [m, L]. Thus the eigenval-
ues of I —tM are all in [1—tL, 1—tm] and the spectral norm of I —tM is 7 max {|1 —tL|, |1 — tm\}

The best choice of t is when 1 — tL = —(1 — tm) which g;ves t= +L and then vy = flz = n+1
where k = L/m. It then follows that ||z — z*||2 < (:—j) lxo — z*|2. O

Illustration

e Consider the gradient method applied to the function f(z) = 3||Az — b||3 with 4 € RV*"
and N > n, and A is full rank. We have Vf(r) = AT(Ax —b) and V2f(z) = ATA. We see
that f is m-strongly convex and L-smooth with m = Apin (AT A) > 0 (since A is full column
rank) and L = Apax(AT A). Figure below shows the convergence of the gradient method to
the optimal value f* (N = 400,n = 200). We observe a linear convergence rate.
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Figure 1: Gradient method for f(x) = (1/2)||Az — b||2 where A € RV*" is full column rank. We
observe linear convergence.



e Consider now the function f(z) = Zf\i 1 log <1 + e“;“b"). This function is not strongly

convex (note that log(1+e') ~ t for ¢ large). The plot below shows the gradient method, and
we clearly see a sublinear convergence rate.
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Figure 2: Gradient method for f(z) = Zf\il log (1 + e“iT$+bi>. We observe a sublinear rate of

convergence. Note that the function f is mot strongly convex.
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