Nesterov's fast gradient method 4

Is the gradient method optimal? Or is there another algorithm that can achieve faster rate of convergence?

Nesterov's fast gradient method 4.1

We will see that a simple (yet nontrivial!) modification of the gradient method allows us to boost the convergence rate from O(1/k) to $O(1/k^2)$ for L-smooth functions. The algorithm is as follows: Start with $x_0 \in \mathbb{R}^n$, $\theta_0 = 1$, $v_0 = x_0$ and iterate for $k = 0, 1, \ldots$:

$$\begin{cases} \text{If } k \ge 1: \text{ choose } \theta_k \in (0,1) \text{ so that } \frac{(1-\theta_k)t_k}{\theta_k^2} \le \frac{t_{k-1}}{\theta_{k-1}^2} \\ y = (1-\theta_k)x_k + \theta_k v_k \\ x_{k+1} = y - t_k \nabla f(y) \\ v_{k+1} = x_k + \frac{1}{\theta_k}(x_{k+1} - x_k) \end{cases}$$
(1)

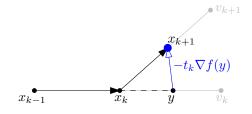


Figure 1: Iteration rule for the fast gradient method. y is defined as an extrapolation of x_k along the direction $x_k - x_{k-1}$, namely $y = x_k + \beta_k (x_k - x_{k-1})$. We evaluate the gradient of f at y and the new iterate is defined as $y - t_k \nabla f(y)$. We also show in this figure the iterates v_k . We show them in light gray because they are not "essential" for the algorithm (i.e., they can be eliminated). The only point to note here is that y is a θ -combination of x_k and v_k ; and v_{k+1} is defined in such a way that x_{k+1} is a θ -combination (with the same θ) of x_k and v_{k+1} . It is easy to see from the picture that $v_{k+1} - v_k$ must be proportional to $\nabla f(y)$.

Some comments on the algorithm:

- The condition on θ_k looks complicated; it comes from the analysis of the sequences $\{x_k, v_k\}$. We will comment on the choice of θ_k later.
- The iterates v_k can be eliminated. In this case, the algorithm has only two steps per iteration: $y = x_k + \beta_k (x_k - x_{k-1})$ where $\beta_k = \theta_k (\theta_{k-1}^{-1} - 1)$ and $x_{k+1} = y - t_k \nabla f(y)$. See Figure 4.1 for an illustration.
- Algorithm (1) is very similar to a standard gradient method: the "only" difference is that the gradient is taken at a point y that is an extrapolation of x_k along the direction $x_k - x_{k-1}$.
- The defining property of v_{k+1} (last line of (1)) is that $x_{k+1} = (1 \theta_k)x_k + \theta_k v_{k+1}$. See also comment in Figure 4.1.

We now comment on the θ_k 's:

- One can always find $\theta_k \in (0,1)$ such that the condition in the first line of the algorithm is always satisfied. In fact one can find a θ_k such that we have equality. This is given by $\theta_k = \frac{-a + \sqrt{a^2 + 4}}{2}$ where $a^2 = \theta_{k-1}^2 t_k / t_{k-1}$.
- When $t_k = t$ is fixed, one can check that the sequence $\theta_k = \frac{2}{k+2}$ satisfies the desired inequality $\frac{1-\theta_k}{\theta_{k-1}^2} \leq \frac{1}{\theta_{k-1}^2}$ (but it does not satisfy equality)

We are now ready to prove convergence of the algorithm:

Theorem 4.1 (Nesterov). Let f be convex with L-Lipschitz continuous gradient. The iterations of (1) with constant step size $t_k = t \in (0, 1/L]$ and with $\theta_k = \frac{2}{k+2}$ satisfy

$$f(x_k) - f^* \le \frac{2}{(k+1)^2 t} \|x_0 - x^*\|_2^2$$

for all $k \geq 1$.

Proof. We start like we did with the gradient method. We let $x^+ = y - t\nabla f(y)$. Then we have:

$$f(x^{+}) \leq f(y) + \langle \nabla f(y), (x^{+} - y) \rangle + \frac{L}{2} ||x^{+} - y||_{2}^{2}$$

= $f(y) - t ||\nabla f(y)||_{2}^{2} (1 - Lt/2)$
 $\leq f(y) - (t/2) ||\nabla f(y)||_{2}^{2}$ (2)

where we used that $0 < t \le 1/L$. By convexity of f we also have, for any $z \in \mathbb{R}^n$, $f(y) - f(z) \le \nabla f(y)^T (y-z)$. Combining this with (2), and using the fact that $\nabla f(y) = -\frac{1}{t}(x^+ - y)$ we get

$$f(x^{+}) - f(z) \leq f(y) - f(z) - (t/2) \|\nabla f(y)\|_{2}^{2}$$

$$\leq \langle \nabla f(y), y - z \rangle - (t/2) \|\nabla f(y)\|_{2}^{2}$$

$$= -(t/2) \|\nabla f(y) - (1/t)(y - z)\|_{2}^{2} + \frac{1}{2t} \|y - z\|_{2}^{2}$$

$$= \frac{1}{2t} \left[-\|x^{+} - z\|_{2}^{2} + \|y - z\|_{2}^{2} \right].$$
(3)

Until now this is the same as for the analysis of the gradient method [In the gradient method we had $y = x_k$, $z = x^*$, then we summed the inequality and the terms on the right-hand side telescoped].

What we will do here is that we will evaluate (3) at the points $z = x^*$ and z = x and consider the convex combination with weights $\{\theta, 1 - \theta\}$. Observe that the RHS of (3) is affine in z (this is apparent from the second line). Thus we get:

$$f(x^{+}) - (\theta f(x^{*}) + (1-\theta)f(x)) \le \frac{1}{2t} \left[\|y - (\theta x^{*} + (1-\theta)x)\|_{2}^{2} - \|x^{+} - (\theta x^{*} + (1-\theta)x)\|_{2}^{2} \right]$$

Now let's recall that $y = (1 - \theta)x + \theta v$ (where v stands for v_k and v^+ for v_{k+1}). This implies that the first-term on the RHS of (3) is $\theta^2 ||v - x^*||_2^2$. Also recall that $x^+ = (1 - \theta)x + \theta v^+$ and so the second-term on the RHS is (3) is $\theta^2 ||v^+ - x^*||_2^2$. Finally we get [with a slight rewrite of the LHS]

$$f(x_{k+1}) - f(x^*) - (1 - \theta_k)(f(x_k) - f(x^*)) \le \frac{\theta_k^2}{2t} \left[\|x^* - v_k\|_2^2 - \|x^* - v_{k+1}\|_2^2 \right].$$
(4)

Rearranging to put the iterates k + 1 on one side of the inequality, and the iterates k on the other side:

$$\frac{t}{\theta_k^2}(f(x_{k+1}) - f(x^*)) + \frac{1}{2} \|x^* - v_{k+1}\|_2^2 \le \frac{(1 - \theta_k)t}{\theta_k^2}(f(x_k) - f(x^*)) + \frac{1}{2} \|x^* - v_k\|_2^2$$
(5)

Now we use the assumption that $(1 - \theta_k)/\theta_k^2 \le 1/(\theta_{k-1})^2$ to get:

$$\frac{t}{\theta_k^2}(f(x_{k+1}) - f(x^*)) + \frac{1}{2} \|x^* - v_{k+1}\|_2^2 \le \frac{t}{\theta_{k-1}^2}(f(x_k) - f(x^*)) + \frac{1}{2} \|x^* - v_k\|_2^2.$$
(6)

Inequality above tells us that the quantity $V_k = \frac{t}{\theta_{k-1}^2} (f(x_k) - f(x^*)) + \frac{1}{2} ||x^* - v_k||_2^2$ is nonincreasing with k. Thus we have $V_k \leq V_{k-1} \leq \cdots \leq V_1$ which gives

$$\begin{aligned} \frac{t}{\theta_{k-1}^2} (f(x_k) - f(x^*)) + \frac{1}{2} \|x^* - v_k\|_2^2 &\leq \frac{t}{\theta_0^2} (f(x_1) - f(x^*)) + \frac{1}{2} \|x^* - v_1\|_2^2 \\ &\leq \frac{(1 - \theta_0)t}{\theta_0^2} (f(x_0) - f(x^*)) + \frac{1}{2} \|x^* - v_0\|_2^2 \\ &= \frac{1}{2} \|x^* - x_0\|_2^2 \end{aligned}$$

where the second line follows from (5) with k = 0, and the last line uses $\theta_0 = 1$ and $v_0 = x_0$. Thus we get $f(x_k) - f^* \leq \frac{\theta_{k-1}^2}{2t} ||x^* - x_0||_2^2$, and with $\theta_{k-1} = \frac{2}{k+1}$ we get the desired rate.

Some remarks on the algorithm:

Descent The fast gradient method is not a descent method, i.e., it is possible that $f(x_{k+1}) > f(x_k)$ (unlike the gradient method). The convergence analysis proves however that a certain combination of $f(x_k) - f^*$ and $||x^* - v_k||_2^2$ decreases with k (cf. Equation (6)).

Backtracking line search One can also prove convergence of the algorithm with a backtracking line search, rather than a constant line search. The only requirement on the step size t_k is that inequality (2) is satisfied; this is the only thing needed in the convergence proof. The scheme works as follows: Starting with $t_k = \hat{t} > 0$, keep updating $t_k = \beta t_k$ with $\beta \in (0, 1)$ until condition (2) is satisfied. (Note that the latter condition can be more succintly written as $f(x_{k+1}) \leq f(y) - \frac{t_k}{2} \|\nabla f(y)\|_2^2$.) Also note that each time t_k is updated, one has to recompute θ_k , y, and x_{k+1} . In all, the line search at iteration k proceeds as follows:

Start with $t_k = \hat{t}$, and compute associated θ_k, y, x_{k+1} While $f(x_{k+1}) > f(y) - \frac{t_k}{2} \|\nabla f(y)\|_2^2$ Update $t_k = \beta t_k$ Compute θ_k such that $\frac{1-\theta_k}{\theta_k^2} t_k \leq \frac{t_{k-1}}{\theta_{k-1}^2}$ Compute $y = (1 - \theta_k)x_k + \theta_k v_k$ Compute $x_{k+1} = y - t_k \nabla f(y)$

Illustration Consider the function $f(x) = \sum_{i=1}^{N} \log \left(1 + e^{a_i^T x + b_i}\right)$ which we considered in the previous lecture. The plot below compares the standard gradient method with the fast gradient method, and we observe that the latter converges faster.

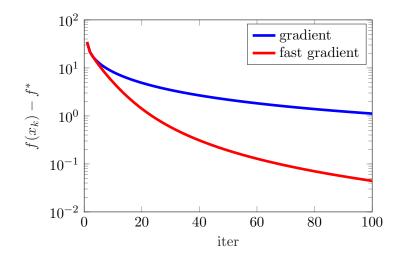


Figure 2: Fast gradient method for logistic regression

Strongly convex case We have seen in Lecture 3 that when the function f is m-strongly convex, the gradient method with step size t = 2/(m + L) converges at a linear rate $\approx (1 - \frac{1}{\kappa})^{2k}$ where $\kappa = \frac{L}{m} \ge 1$ is the condition number. What about the fast gradient method? If we know the strong convexity parameter m > 0, algorithm (1) can be slightly modified to incorporate this knowledge. We do not give the general algorithm (as we did in Equation (1)), but only an important special case, where $t_k = 1/L$ and a specific choice of θ_k . The algorithm reads:

$$\begin{cases} y = x_k + \frac{1 - \sqrt{m/L}}{1 + \sqrt{m/L}} (x_k - x_{k-1}) \\ x_{k+1} = y - (1/L) \nabla f(y). \end{cases}$$
(7)

One can prove that if f is m-strongly convex and ∇f is L-Lipschitz, then the convergence rate of (7) is $\approx (1 - \sqrt{1/\kappa})^{2k}$. This means that we reach accuracy ϵ in at most $O(\sqrt{\frac{L}{m}}\log(1/\epsilon))$ iterations. This can be much smaller than the $O(\frac{L}{m}\log(1/\epsilon))$ iterations of the gradient method [cf. Lecture 3].

One drawback of the algorithm (7) is that it relies on the knowledge of m which can sometimes be difficult to estimate. (Note that the gradient method does not require knowledge of m. In lecture 3 we assumed $t_k = 2/(m + L)$ but one can easily see that $t_k = 1/L$ also gives a linear convergence rate of the form $(1 - 1/\kappa)^k$.) Several improvements and adaptations that avoid knowledge of mhave been proposed recently in the literature, see e.g., [OC15, Section 2.1].

4.2 Lower complexity bounds

It turns that $O(1/k^2)$ is the best rate one can get for minimization of L-smooth convex functions, assuming we only have access to gradients of f.

A first-order algorithm is one that has access to function values f(x) and gradients $\nabla f(x)$. The complexity of such an algorithm is the number of queries it makes. We consider here algorithms that satisfy the following assumption: the k'th iterate/query point x_k of the algorithm satisfies:

$$x_k \in x_0 + \operatorname{span}\left\{\nabla f(x_0), \nabla f(x_1), \dots, \nabla f(x_{k-1})\right\}.$$
(8)

Clearly the gradient and fast gradient methods satisfy this assumption.

Define $\mathcal{F}_L = \{f : \mathbb{R}^n \to \mathbb{R} \text{ convex with } L\text{-Lipschitz gradient}\}$. We want to understand how well can first-order algorithms behave on functions in \mathcal{F}_L . The next theorem, due to Nesterov, shows that $O(1/k^2)$ is the best rate one can hope for.

Theorem 4.2 (Nesterov). Fix L > 0 and an integer $k \ge 1$. For any algorithm satisfying (8), there is a function $f \in \mathcal{F}_L$ on n = 2k + 1 variables such that after k steps of the algorithm

$$f(x_k) - f^* \ge \frac{3}{32} \frac{L \|x_0 - x^*\|_2^2}{(k+1)^2}$$
(9)

and

$$\|x_k - x^*\|_2^2 \ge \frac{1}{8} \|x_0 - x^*\|_2^2.$$
(10)

Proof. Let n = 2k + 1 and consider the function $f : \mathbb{R}^n \to \mathbb{R}$ as follows

$$f(x) = \frac{L}{8} \left(x_n^2 + \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2 + x_1^2 - 2x_1 \right).$$
(11)

Let also, for i = 1, ..., n $V_i = \{x \in \mathbb{R}^n : x_{i+1} = \cdots = x_n = 0\}$. Then we have the following properties about f:

- (i) $f \in \mathcal{F}_L$
- (ii) The minimum of f is attained at $x^* = \left(\frac{n}{n+1}, \dots, \frac{2}{n+1}, \frac{1}{n+1}\right)$ and the optimal value is $f^* = -\frac{L}{8}\frac{n}{n+1}$. More generally the minimum of f on the subspace V_i is $-\frac{L}{8}\frac{i}{i+1}$, attained at the point $\left(\frac{i}{i+1}, \dots, \frac{2}{i+1}, \frac{1}{i+1}, 0, \dots, 0\right) \in V_i$.

(iii) If $x \in V_i$ for i < n, then $\nabla f(x) \in V_{i+1}$.

We leave it to the reader to check these properties.

Assume without loss of generality that the first query point of the algorithm is $x_0 = 0$ (if it is not we simply consider the function $\tilde{f}(x) = f(x - x_0)$). By property (iii) of f, and by assumption (8) on the algorithm this means that the k'th query point x_k of the algorithm must belong to V_k . Thus this means that

$$f(x_k) \ge \min_{x \in V_k} f(x) = -\frac{L}{8} \frac{k}{k+1}.$$

Now using the fact that n = 2k + 1 and $f^* = -\frac{L}{8}\frac{n}{n+1}$ we get

$$f(x_k) - f^* \ge \frac{L}{8} \left(\frac{2k+1}{2k+2} - \frac{k}{k+1} \right) = \frac{L}{8} \frac{1}{2k+2}.$$

Also note that $||x_0 - x^*||_2^2 = ||x^*||_2^2 = \frac{1}{(n+1)^2} \sum_{i=1}^{n-1} i^2 = \frac{n}{n+1} \frac{2n+1}{6} \le \frac{n+1}{3}$, thus

$$\frac{f(x_k) - f^*}{\|x_0 - x^*\|_2^2} \ge \frac{L}{8} \frac{1}{2k+2} \frac{3}{2k+2} = \frac{3L}{32} \frac{1}{(k+1)^2}$$

as desired.

We now prove (10). Since $x_k = (?, ..., ?, 0, ..., 0)$ then $x_k - x^* = \left(?, ..., ?, -\frac{n-k}{n+1}, ..., -\frac{1}{n+1}\right)$ which implies $||x_k - x^*||_2^2 \ge \frac{1}{(n+1)^2} \sum_{i=1}^{n-k} i^2$. Now using the fact that n = 2k+1 we get $||x_k - x^*||_2^2 \ge \frac{1}{24}(2k+3)$. Combining with $||x_0 - x^*||_2^2 \le \frac{2k+2}{3}$ we get $||x_k - x^*||_2^2 \ge \frac{1}{8}||x_0 - x^*||_2^2$ as desired. \Box Strongly convex functions: Let $\mathcal{F}_{m,L} = \{f : \mathbb{R}^n \to \mathbb{R} \text{ m-strongly convex and } L\text{-smooth}\}$. One can show in a similar way as the proof above, that for any first-order algorithm \mathcal{A} that runs for k iterations, there is a function $f \in \mathcal{F}_{m,L}$ such that the k'th iterate of \mathcal{A} on f satisfies:

$$f(x_k) - f^* \gtrsim m \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x_0 - x^*\|^2.$$

This means that to reach accuracy ϵ , one needs at least $\approx \sqrt{L/m} \log(1/\epsilon)$ iterations.

References

[OC15] Brendan O'Donoghue and Emmanuel Candès. Adaptive restart for accelerated gradient schemes. Foundations of computational mathematics, 15(3):715–732, 2015. 4