
Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

4 Nesterov’s fast gradient method

Is the gradient method optimal? Or is there another algorithm that can achieve faster rate of
convergence?

4.1 Nesterov’s fast gradient method

We will see that a simple (yet nontrivial!) modification of the gradient method allows us to boost
the convergence rate from O(1/k) to O(1/k2) for L-smooth functions. The algorithm is as follows:

Start with x0 ∈ Rn, θ0 = 1, v0 = x0 and iterate for k = 0, 1, . . .:
If k ≥ 1: choose θk ∈ (0, 1) so that (1−θk)tk

θ2k
≤ tk−1

θ2k−1

y = (1− θk)xk + θkvk

xk+1 = y − tk∇f(y)

vk+1 = xk + 1
θk

(xk+1 − xk)

(1)

xk−1 xk y

−tk∇f(y)

xk+1

vk

vk+1

Figure 1: Iteration rule for the fast gradient method. y is defined as an extrapolation of xk along
the direction xk−xk−1, namely y = xk +βk(xk−xk−1). We evaluate the gradient of f at y and the
new iterate is defined as y − tk∇f(y). We also show in this figure the iterates vk. We show them
in light gray because they are not “essential” for the algorithm (i.e., they can be eliminated). The
only point to note here is that y is a θ-combination of xk and vk; and vk+1 is defined in such a way
that xk+1 is a θ-combination (with the same θ) of xk and vk+1. It is easy to see from the picture
that vk+1 − vk must be proportional to ∇f(y).

Some comments on the algorithm:

• The condition on θk looks complicated; it comes from the analysis of the sequences {xk, vk}.
We will comment on the choice of θk later.

• The iterates vk can be eliminated. In this case, the algorithm has only two steps per iteration:
y = xk + βk(xk − xk−1) where βk = θk(θ

−1
k−1 − 1) and xk+1 = y − tk∇f(y). See Figure 4.1 for

an illustration.

• Algorithm (1) is very similar to a standard gradient method: the “only” difference is that the
gradient is taken at a point y that is an extrapolation of xk along the direction xk − xk−1.

• The defining property of vk+1 (last line of (1)) is that xk+1 = (1 − θk)xk + θkvk+1. See also
comment in Figure 4.1.

1

We now comment on the θk’s:

• One can always find θk ∈ (0, 1) such that the condition in the first line of the algorithm
is always satisfied. In fact one can find a θk such that we have equality. This is given by

θk = −a+
√
a2+4

2 where a2 = θ2k−1tk/tk−1.

• When tk = t is fixed, one can check that the sequence θk = 2
k+2 satisfies the desired inequality

1−θk
θ2k
≤ 1

θ2k−1
(but it does not satisfy equality)

We are now ready to prove convergence of the algorithm:

Theorem 4.1 (Nesterov). Let f be convex with L-Lipschitz continuous gradient. The iterations of
(1) with constant step size tk = t ∈ (0, 1/L] and with θk = 2

k+2 satisfy

f(xk)− f∗ ≤
2

(k + 1)2t
‖x0 − x∗‖22

for all k ≥ 1.

Proof. We start like we did with the gradient method. We let x+ = y − t∇f(y). Then we have:

f(x+) ≤ f(y) +
〈
∇f(y), (x+ − y)

〉
+
L

2
‖x+ − y‖22

= f(y)− t‖∇f(y)‖22(1− Lt/2)

≤ f(y)− (t/2)‖∇f(y)‖22

(2)

where we used that 0 < t ≤ 1/L. By convexity of f we also have, for any z ∈ Rn, f(y) − f(z) ≤
∇f(y)T (y − z). Combining this with (2), and using the fact that ∇f(y) = −1

t (x
+ − y) we get

f(x+)− f(z) ≤ f(y)− f(z)− (t/2)‖∇f(y)‖22
≤ 〈∇f(y), y − z〉 − (t/2)‖∇f(y)‖22

= −(t/2)‖∇f(y)− (1/t)(y − z)‖22 +
1

2t
‖y − z‖22

=
1

2t

[
−‖x+ − z‖22 + ‖y − z‖22

]
.

(3)

Until now this is the same as for the analysis of the gradient method [In the gradient method we had
y = xk, z = x∗, then we summed the inequality and the terms on the right-hand side telescoped].

What we will do here is that we will evaluate (3) at the points z = x∗ and z = x and consider
the convex combination with weights {θ, 1− θ}. Observe that the RHS of (3) is affine in z (this is
apparent from the second line). Thus we get:

f(x+)− (θf(x∗) + (1− θ)f(x)) ≤ 1

2t

[
‖y − (θx∗ + (1− θ)x)‖22 − ‖x+ − (θx∗ + (1− θ)x)‖22

]
.

Now let’s recall that y = (1− θ)x+ θv (where v stands for vk and v+ for vk+1). This implies that
the first-term on the RHS of (3) is θ2‖v − x∗‖22. Also recall that x+ = (1 − θ)x + θv+ and so the
second-term on the RHS is (3) is θ2‖v+ − x∗‖22. Finally we get [with a slight rewrite of the LHS]

f(xk+1)− f(x∗)− (1− θk)(f(xk)− f(x∗)) ≤
θ2k
2t

[
‖x∗ − vk‖22 − ‖x∗ − vk+1‖22

]
. (4)

2

Rearranging to put the iterates k + 1 on one side of the inequality, and the iterates k on the other
side:

t

θ2k
(f(xk+1)− f(x∗)) +

1

2
‖x∗ − vk+1‖22 ≤ (1− θk)t

θ2k
(f(xk)− f(x∗)) +

1

2
‖x∗ − vk‖22 (5)

Now we use the assumption that (1− θk)/θ2k ≤ 1/(θk−1)
2 to get:

t

θ2k
(f(xk+1)− f(x∗)) +

1

2
‖x∗ − vk+1‖22 ≤ t

θ2k−1
(f(xk)− f(x∗)) +

1

2
‖x∗ − vk‖22. (6)

Inequality above tells us that the quantity Vk = t
θ2k−1

(f(xk)− f(x∗)) + 1
2‖x

∗− vk‖22 is nonincreasing

with k. Thus we have Vk ≤ Vk−1 ≤ · · · ≤ V1 which gives

t

θ2k−1
(f(xk)− f(x∗)) +

1

2
‖x∗ − vk‖22 ≤ t

θ20
(f(x1)− f(x∗)) +

1

2
‖x∗ − v1‖22

≤ (1− θ0)t
θ20

(f(x0)− f(x∗)) +
1

2
‖x∗ − v0‖22

=
1

2
‖x∗ − x0‖22

where the second line follows from (5) with k = 0, and the last line uses θ0 = 1 and v0 = x0. Thus

we get f(xk)− f∗ ≤
θ2k−1

2t ‖x
∗ − x0‖22, and with θk−1 = 2

k+1 we get the desired rate.

Some remarks on the algorithm:

Descent The fast gradient method is not a descent method, i.e., it is possible that f(xk+1) >
f(xk) (unlike the gradient method). The convergence analysis proves however that a certain com-
bination of f(xk)− f∗ and ‖x∗ − vk‖22 decreases with k (cf. Equation (6)).

Backtracking line search One can also prove convergence of the algorithm with a backtracking
line search, rather than a constant line search. The only requirement on the step size tk is that
inequality (2) is satisfied; this is the only thing needed in the convergence proof. The scheme works
as follows: Starting with tk = t̂ > 0, keep updating tk = βtk with β ∈ (0, 1) until condition (2)
is satisfied. (Note that the latter condition can be more succintly written as f(xk+1) ≤ f(y) −
tk
2 ‖∇f(y)‖22.) Also note that each time tk is updated, one has to recompute θk, y, and xk+1. In all,
the line search at iteration k proceeds as follows:

Start with tk = t̂, and compute associated θk, y, xk+1

While f(xk+1) > f(y)− tk
2 ‖∇f(y)‖22

Update tk = βtk
Compute θk such that 1−θk

θ2k
tk ≤ tk−1

θ2k−1

Compute y = (1− θk)xk + θkvk
Compute xk+1 = y − tk∇f(y)

Illustration Consider the function f(x) =
∑N

i=1 log
(

1 + ea
T
i x+bi

)
which we considered in the

previous lecture. The plot below compares the standard gradient method with the fast gradient
method, and we observe that the latter converges faster.

3

0 20 40 60 80 100
10−2

10−1

100

101

102

iter

f
(x
k
)
−
f
∗

gradient
fast gradient

Figure 2: Fast gradient method for logistic regression

Strongly convex case We have seen in Lecture 3 that when the function f is m-strongly convex,
the gradient method with step size t = 2/(m + L) converges at a linear rate ≈ (1 − 1

κ)2k where
κ = L

m ≥ 1 is the condition number. What about the fast gradient method? If we know the strong
convexity parameter m > 0, algorithm (1) can be slightly modified to incorporate this knowledge.
We do not give the general algorithm (as we did in Equation (1)), but only an important special
case, where tk = 1/L and a specific choice of θk. The algorithm reads:y = xk +

1−
√
m/L

1+
√
m/L

(xk − xk−1)

xk+1 = y − (1/L)∇f(y).
(7)

One can prove that if f is m-strongly convex and ∇f is L-Lipschitz, then the convergence rate of

(7) is ≈ (1−
√

1/κ)2k. This means that we reach accuracy ε in at most O(
√

L
m log(1/ε)) iterations.

This can be much smaller than the O(Lm log(1/ε)) iterations of the gradient method [cf. Lecture 3].
One drawback of the algorithm (7) is that it relies on the knowledge of m which can sometimes

be difficult to estimate. (Note that the gradient method does not require knowledge of m. In lecture
3 we assumed tk = 2/(m+ L) but one can easily see that tk = 1/L also gives a linear convergence
rate of the form (1 − 1/κ)k.) Several improvements and adaptations that avoid knowledge of m
have been proposed recently in the literature, see e.g., [OC15, Section 2.1].

4.2 Lower complexity bounds

It turns that O(1/k2) is the best rate one can get for minimization of L-smooth convex functions,
assuming we only have access to gradients of f .

A first-order algorithm is one that has access to function values f(x) and gradients ∇f(x). The
complexity of such an algorithm is the number of queries it makes. We consider here algorithms
that satisfy the following assumption: the k’th iterate/query point xk of the algorithm satisfies:

xk ∈ x0 + span {∇f(x0),∇f(x1), . . . ,∇f(xk−1)} . (8)

Clearly the gradient and fast gradient methods satisfy this assumption.

4

Define FL = {f : Rn → R convex with L-Lipschitz gradient}. We want to understand how well
can first-order algorithms behave on functions in FL. The next theorem, due to Nesterov, shows
that O(1/k2) is the best rate one can hope for.

Theorem 4.2 (Nesterov). Fix L > 0 and an integer k ≥ 1. For any algorithm satisfying (8), there
is a function f ∈ FL on n = 2k + 1 variables such that after k steps of the algorithm

f(xk)− f∗ ≥
3

32

L‖x0 − x∗‖22
(k + 1)2

(9)

and

‖xk − x∗‖22 ≥
1

8
‖x0 − x∗‖22. (10)

Proof. Let n = 2k + 1 and consider the function f : Rn → R as follows

f(x) =
L

8

(
x2n +

n−1∑
i=1

(xi+1 − xi)2 + x21 − 2x1

)
. (11)

Let also, for i = 1, . . . , n Vi = {x ∈ Rn : xi+1 = · · · = xn = 0}. Then we have the following
properties about f :

(i) f ∈ FL

(ii) The minimum of f is attained at x∗ =
(

n
n+1 , . . . ,

2
n+1 ,

1
n+1

)
and the optimal value is f∗ =

−L
8

n
n+1 . More generally the minimum of f on the subspace Vi is −L

8
i
i+1 , attained at the point(

i
i+1 , . . . ,

2
i+1 ,

1
i+1 , 0, . . . , 0

)
∈ Vi.

(iii) If x ∈ Vi for i < n, then ∇f(x) ∈ Vi+1.

We leave it to the reader to check these properties.
Assume without loss of generality that the first query point of the algorithm is x0 = 0 (if it is

not we simply consider the function f̃(x) = f(x− x0)). By property (iii) of f , and by assumption
(8) on the algorithm this means that the k’th query point xk of the algorithm must belong to Vk.
Thus this means that

f(xk) ≥ min
x∈Vk

f(x) = −L
8

k

k + 1
.

Now using the fact that n = 2k + 1 and f∗ = −L
8

n
n+1 we get

f(xk)− f∗ ≥
L

8

(
2k + 1

2k + 2
− k

k + 1

)
=
L

8

1

2k + 2
.

Also note that ‖x0 − x∗‖22 = ‖x∗‖22 = 1
(n+1)2

∑n−1
i=1 i

2 = n
n+1

2n+1
6 ≤ n+1

3 , thus

f(xk)− f∗

‖x0 − x∗‖22
≥ L

8

1

2k + 2

3

2k + 2
=

3L

32

1

(k + 1)2

as desired.
We now prove (10). Since xk = (?, . . . , ?, 0, . . . , 0) then xk − x∗ =

(
?, . . . , ?,−n−k

n+1 , . . . ,−
1

n+1

)
which implies ‖xk−x∗‖22 ≥ 1

(n+1)2
∑n−k

i=1 i
2. Now using the fact that n = 2k+1 we get ‖xk−x∗‖22 ≥

1
24(2k + 3). Combining with ‖x0 − x∗‖22 ≤ 2k+2

3 we get ‖xk − x∗‖22 ≥ 1
8‖x0 − x

∗‖22 as desired.

5

Strongly convex functions: Let Fm,L = {f : Rn → R m-strongly convex and L-smooth}. One
can show in a similar way as the proof above, that for any first-order algorithm A that runs for k
iterations, there is a function f ∈ Fm,L such that the k’th iterate of A on f satisfies:

f(xk)− f∗ ' m

(√
κ− 1√
κ+ 1

)2k

‖x0 − x∗‖2.

This means that to reach accuracy ε, one needs at least ≈
√
L/m log(1/ε) iterations.

References

[OC15] Brendan O’Donoghue and Emmanuel Candès. Adaptive restart for accelerated gradient
schemes. Foundations of computational mathematics, 15(3):715–732, 2015. 4

6

	Nesterov's fast gradient method
	Nesterov's fast gradient method
	Lower complexity bounds

