Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

6 Subgradient method

In this lecture we look at the problem of minimizing a general nonsmooth convex function f(z).

Subgradient method The subgradient method to minimize f(z) works as follows. Choose
zg € R™ and iterate, for k£ > 0:
Tht1 = Tk — tkGk

where g € 0f(x) is a subgradient of f at xp and t; > 0 is the step size.
Note: A negative subgradient is not necessarily a descent direction, i.e., it is possible that
flx—tg) > f(x) for allt > 0 (small enough). For example f(x) = |z|, x =0 and g = —1 € 9f(0).
Convergence analysis of subgradient method:
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where in the last line we used the fact that gp € 0f(xx). Applying this inequality recursively to
|lzx — z*||3, we get at the end:
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which after rearranging, and using ||z, 1 — *[|3 > 0, gives us
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Let foest,x = min{f(zo),..., f(xx)}. Since t; > 0 we get
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where in the last equation we assumed that f is G-Lipschitz, so that ||g;||2 < G (see Exercise sheet
2).

fbest,k - f* <
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e Constant step size: If ¢, =t and f is G-Lipschitz then we get

fbest,k_f > 2(]64—71)15 5

(4)

In this case we do not guarantee convergence: we only guarantee that fyes r will be at most
G?t/2 sub-optimal, in the limit k — oo.



Assume that k is fixed a priori (i.e., we have a certain number of iterations that we are going
to run). What is the choice of ¢ that minimizes the right-hand side of (4)? The choice of
t is the one that will make the two terms equal, namely ||zg — z*[|3/(k + 1) = G*, i.e.,
t = ||zg — 2*||2/(GVk + 1) and the corresponding bound we get with this choice of ¢ is
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e Diminishing step size: consider the choice t; ~ 1/v/i. Then Z’g t; ~ Vk, ZIS t? ~ In(k), and
so we get a convergence like In(k)/v/k. In fact, one can get rid of the log term by recursing
the inequality (1) only up to iterate k/2 (instead of all the way back to the first iterate), and
use the fact that Z£/2 1/i < constant.

INlustration The figure below shows the subgradient method applied to the problem of minimiz-
ing the nonsmooth function f(z) = |[|[Az — b||; where A € R™*" with m > n, and b € R™. We see
that with a constant step size, the method does not converge to f*, but only to a neighborhood of
the optimal value.
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Optimality of subgradient method One can show that the convergence rate of 1/ Vk is the
best possible one can get on the class of nonsmooth convex Lipschitz functions. More precisely, fix
k, G, and R > 0. For any algorithm where the k’th iterate satisfies

x) € T + span{gi, ..., gk}

where g; € df(x;) and zg is the starting point, there is a convex function f that is G-Lipschitz on
{z : ||z — xo|l2 < R} such that after k iterations of the algorithm we have
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See Exercise sheet 2 for a proof.
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