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7 Constrained optimization and duality

So far we have considered unconstrained optimization problems of the form min{f(x) : x ∈ Rn},
where f is convex and defined on the whole of Rn. We consider in this lecture

min
x∈C

f(x) (1)

where C ⊂ Rn is a convex set, and, for simplicity, dom(f) = Rn.

Optimality conditions We can write our problem as

min
x∈C

f(x) = min
x∈Rn

f(x) + IC(x)

where IC(x) is the indicator function of C, which takes the value 0 for x ∈ C, and +∞ otherwise.
The optimality condition for the latter is 0 ∈ ∂(f + IC)(x). Under nice assumptions on C (e.g.,
intC 6= ∅ or C is polyhedral, see Lecture 5) we have ∂(f + IC)(x) = ∂f(x) + ∂IC(x). In this case,
the optimality condition reads

0 ∈ ∂f(x) + ∂NC(x).

We have seen that ∂IC(x) is nothing but the normal cone of C at x:

∂IC(x) = NC(x) = {g ∈ Rn : 〈g, x〉 ≥ 〈g, y〉 ∀y ∈ C}.
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Figure 1: Normal cone

Assuming that f is smooth, a necessary and sufficient condition for x∗ to be an optimal point
of (1) is

−∇f(x∗) ∈ NC(x∗)

Special case of linear constraints Consider the special case where C is a subspace, i.e. C =
{x ∈ Rn : Ax = b} where A ∈ Rm×n and b ∈ Rm, so that the problem of interest is:

f∗ = min
Ax=b

f(x). (2)

Then one can easily verify that

NC(x) = ker(A)⊥ = im(AT ) = {ATλ : λ ∈ Rm}.
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(Note in particular that NC(x) is independent of x.) Thus in this case, a necessary and sufficient
condition for x∗ to solve min{f(x) : Ax = b} is that there exists λ∗ ∈ Rm such that{

−∇f(x∗) = ATλ∗

Ax∗ = b.
(3)

The variable λ∗ is the Lagrange multiplier or dual variable. The optimal dual variable λ∗ happens
to be the solution of another convex optimization problem, called the dual problem, which we now
introduce.

The Lagrangian L(x, λ) associated to the problem (2) is

L(x, λ) = f(x) + 〈λ,Ax− b〉 .

Note that ∇xL(x, λ) = ∇f(x) + ATλ, and thus a minimizer of L(x, λ) gives us a solution of the
first equation in (3), with the particular choice of λ (note however that the solution x∗(λ) is not
guaranteed to satisfy the linear constraints!). This leads us to define the dual function

g(λ) = min
x∈Rn

L(x, λ).

(Note that this is an unconstrained minimization.) An easy, yet important, observation here is the
following:

Weak duality: g(λ) ≤ f∗ ∀λ ∈ Rm.

Indeed
g(λ) = min

x∈Rn
L(x, λ) ≤ min

x:Ax=b
L(x, λ) = min

x:Ax=b
f(x)

where in the last equality we used the fact that L(x, λ) = f(x) when Ax = b. Since g(λ) ≤ f∗ for
all λ, this means that maxλ g(λ) ≤ f∗. The problem of maximizing g(λ) over λ is precisely the dual
problem.

Primal problem Dual problem
min
Ax=b

f(x) max
λ∈Rm

g(λ) = max
λ∈Rm

min
x∈Rn

L(x, λ)

Remark 1. Note that the primal problem can be written equivalently as

min
x∈Rn

max
λ∈Rm

L(x, λ).

This is because the inner maximization is equal to f(x) if Ax = b and +∞ otherwise. Thus we see
that the only difference between the primal and dual problems is the order of the min/max.

The equations (3) actually tell us that the primal and dual problems have the same optimal value;
this is known as strong duality.

Strong duality: max
λ∈Rm

g(λ) = f∗.

Indeed let x∗ be the optimal solution of the primal problem, and let λ∗ be the corresponding dual
variable obtained from (3). Then note that g(λ∗) = L(x∗, λ∗) = f(x∗) where the first equality
follows from the fact that ∇xL(x∗, λ∗) = ∇f(x∗) +ATλ∗ = 0 (first equation in (3)) and the second
equality follows from Ax∗ = b (second equation in (3)).
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