Topics in Convex Optimisation (Lent 2022) Lecturer: Hamza Fawzi

7 Constrained optimization and duality

So far we have considered unconstrained optimization problems of the form min{f(z) : x € R"},
where f is convex and defined on the whole of R”. We consider in this lecture

min f(z) (1)

zeC

where C' C R™ is a convex set, and, for simplicity, dom(f) = R".

Optimality conditions We can write our problem as

min f(z) = min f(z) + Io(z)

where I(x) is the indicator function of C', which takes the value 0 for € C, and +oo otherwise.
The optimality condition for the latter is 0 € d(f + I¢)(z). Under nice assumptions on C (e.g.,
int C' # () or C is polyhedral, see Lecture 5) we have 9(f + I¢)(x) = df (z) + dlc(z). In this case,
the optimality condition reads

0 € df(x)+ ON¢(x).

We have seen that 0l-(z) is nothing but the normal cone of C at x:

Olc(z) = No(z) ={g € R": (g9,z) > (g,y) Yy € C}.

Ne(z)

Figure 1: Normal cone

Assuming that f is smooth, a necessary and sufficient condition for z* to be an optimal point
of (1) is

|—Vf(@") € No(a")

Special case of linear constraints Consider the special case where C' is a subspace, i.e. C' =
{z € R": Az = b} where A € R™*" and b € R™, so that the problem of interest is:

* = min . 2
f g bf (2) (2)
Then one can easily verify that

Ne(z) = ker(A)t = im(AT) = {4TX: X e R™}.



(Note in particular that N¢(x) is independent of z.) Thus in this case, a necessary and sufficient

condition for z* to solve min{ f(x) : Az = b} is that there exists \* € R™ such that

~Vf(z*) = ATX*

\ 3)
Azx* =b.

The variable A* is the Lagrange multiplier or dual variable. The optimal dual variable A* happens
to be the solution of another convex optimization problem, called the dual problem, which we now
introduce.

The Lagrangian L(x, \) associated to the problem (2) is

L(z,\) = f(x) + (\, Az — b) .

Note that V,L(z,\) = Vf(z) + AT\, and thus a minimizer of L(z,\) gives us a solution of the
first equation in (3), with the particular choice of A (note however that the solution z*(\) is not
guaranteed to satisfy the linear constraints!). This leads us to define the dual function

g(A\) = min L(z, A).
TeR™
(Note that this is an unconstrained minimization.) An easy, yet important, observation here is the

following;:
Weak duality: g(\) < f* YA e R™.

Indeed
A) = min L(z,\) < min L(xz,\) = mi
g9(A) = min L(z,A) < min L(z,A) = min f(z)
where in the last equality we used the fact that L(z,\) = f(z) when Az =b. Since g(\) < f* for
all A, this means that max) g(\) < f*. The problem of maximizing g(\) over A is precisely the dual
problem.

Primal problem Dual problem
i A) = in L(x, A
min f(z) max g(A) = max min L(z, A)

Remark 1. Note that the primal problem can be written equivalently as

min max L(x, \).

z€R™ AeR™
This is because the inner mazximization is equal to f(x) if Ax = b and +oo otherwise. Thus we see
that the only difference between the primal and dual problems is the order of the min/maz.

The equations (3) actually tell us that the primal and dual problems have the same optimal value;
this is known as strong duality.

Strong duality: max g(\) = f*.
AER™

Indeed let z* be the optimal solution of the primal problem, and let \* be the corresponding dual
variable obtained from (3). Then note that g(A\*) = L(z*,A\*) = f(z*) where the first equality
follows from the fact that V,L(z*, \*) = V f(z*) + ATA\* = 0 (first equation in (3)) and the second
equality follows from Ax* = b (second equation in (3)).
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