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8 Duality (continued) and KKT conditions

Linear inequality constraints We consider a convex optimization problem where the constraint
set C is given by a finite number of linear inequalities

min
x∈C

f(x) (1)

where f : Rn → R is smooth, and

C = {x ∈ Rn : 〈ai, x〉 ≤ bi (i = 1, . . . ,m)}.

Equivalently, we can write C = {x ∈ Rn : Ax ≤ b} where A ∈ Rm×n and b ∈ Rm. We know that
x∗ is an optimal point for (1) if, and only if, −∇f(x∗) ∈ NC(x∗), where NC indicates the normal
cone.

It is not difficult to show that the normal cone for the polyhedron C at x ∈ C is precisely the
cone spanned1 by {ai : 〈ai, x〉 = bi} (active constraints). This can be written as:

NC(x) =

{
m∑
i=1

λiai : λi ≥ 0 and λi(bi − 〈ai, x〉) = 0 ∀i = 1, . . . ,m

}
.

Using matrix notations, we have
∑m

i=1 λiai = ATλ, where {ai} are the columns of AT . Thus, the
necessary and sufficient conditions for optimality can be written as

x∗ ∈ arg min
Ax≤b

f(x) ⇐⇒ ∃λ∗ ∈ Rm s.t.


−∇f(x∗) = ATλ∗

Ax∗ ≤ b
λ∗ ≥ 0

λ∗i (bi − 〈ai, x∗〉) = 0 ∀i = 1, . . . ,m.

(2)

The constraints on the RHS are known as Karush-Kuhn-Tucker conditions of optimality. The last
condition λ∗i (bi − 〈ai, x∗〉) = 0 is known as complementary slackness.

Just like with the case of linear equality constraints, the dual variable λ∗ can be understood as
the solution of some dual optimization problem. Define the Lagrangian by

L(x, λ) = f(x) + 〈λ,Ax− b〉 ,

and the dual function
g(λ) = min

x∈Rn
L(x, λ).

Then one can immediately verify:

Weak duality: g(λ) ≤ min
Ax≤b

f(x) ∀λ ≥ 0.

(Note the condition λ ≥ 0.) To verify weak duality we note

g(λ) = min
x∈Rn

L(x, λ) ≤ min
Ax≤b

L(x, λ) = min
Ax≤b

f(x) + 〈λ,Ax− b〉
(∗)
≤ min

Ax≤b
f(x)

1The cone spanned by {ai} is {
∑

i λiai : λi ≥ 0 ∀i}.
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where in (∗) we used the fact that 〈λ,Ax− b〉 ≤ 0 since Ax − b ≤ 0 and λ ≥ 0. Now the dual
problem is

max
λ≥0

g(λ) = max
λ≥0

min
x∈Rn

L(x, λ).

The KKT conditions (2) assert that we have strong duality and that the optimal value of the
dual (maximization) problem is equal to the optimal value of the primal (minimization) problem.
Indeed, we already know from weak duality that the value of the dual problem is ≤ the value of
the primal problem. For the reverse, let x∗ be a solution of the primal optimization problem, and
let λ∗ be the dual variable so that (2) hold. Then

g(λ∗)
(a)
= L(x∗, λ∗) = f(x∗) + 〈λ∗, Ax∗ − b〉 (b)= f(x∗)

where in (a) we used the fact that ∇xL(x∗, λ∗) = ∇f(x∗) + ATλ∗ = 0 and in (b) we used the fact
that 〈λ∗, Ax∗ − b〉 =

∑m
i=1 λ

∗
i (〈ai, x∗〉 − bi) = 0 (complementary slackness).

General problems Consider a constrained convex optimization problem of the form

min
x∈Rn
{f(x) s.t. x ∈ C1 ∩ C2 ∩ · · · ∩ Cm}.

A necessary and sufficient condition for x∗ to be a minimizer is that

0 ∈ ∂(f + IC1 + · · ·+ ICm)(x∗).

If2 int(dom f) ∩ intC1 ∩ · · · ∩ intCm 6= ∅ (Slater’s condition), then condition above is equivalent
to

0 ∈ ∂f(x∗) +NC1(x∗) + · · ·+NCm(x∗).

Using expressions for the normal cones, one can arrive at explicit necessary and sufficient conditions
of optimality as described above.

Duality Consider a generic convex optimization with convex nonlinear inequality constraints:

f∗ = min
x∈Rn
{f(x) s.t. Ax = b, h1(x) ≤ 0, . . . , hm(x) ≤ 0}. (3)

where f : Rn → R and h1, . . . , hm : Rn → R are convex, and A ∈ Rp×n, b ∈ Rp. The Lagrangian in
this case is

L(x, ν, λ) = f(x) + 〈ν,Ax− b〉+

m∑
i=1

λihi(x)

where ν ∈ Rp, λ ∈ Rm. The dual function is

g(ν, λ) = min
x∈Rn

L(x, ν, λ).

It can be easily verified that if λ ≥ 0, then g(ν, λ) ≤ f∗. The dual problem is

g∗ = max
λ≥0,ν∈Rp

g(ν, λ). (4)

2If some of the Ci are polyhedral, then it is not necessary to take the interior. I.e., if we let I be the set of i such
that Ci is polyhedral, then it is sufficient to assume int dom f ∩ (∩i∈ICi) ∩ (∩i/∈I intCi) 6= ∅. If the function f is
polyhedral (i.e., epi(f) is polyhedral), then int dom f can be replaced by dom f .
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Assuming that there is x̄ such that Ax̄ = b and hi(x̄) < 0 for all i = 1, . . . ,m (Slater’s condition),
then the primal and dual problems have the same value, i.e., we have strong duality. In this case,
and if we assume further that the primal and dual problems are attained at (x∗, ν∗, λ∗), then we
must have 

f(x∗) = g(ν∗, λ∗)

Ax∗ = b, hi(x
∗) ≤ 0 ∀i = 1, . . . ,m

λ∗ ≥ 0.

(5)

The condition f(x∗) = g(ν∗, λ∗) can be simplified further: indeed under the conditions above we
have

f(x∗) = g(ν∗, λ∗) = min
x∈Rn

L(x, ν∗, λ∗) ≤ L(x∗, ν∗, λ∗) = f(x∗) +

m∑
i=1

λ∗ihi(x
∗) ≤ f(x∗),

where we used the fact that Ax∗ = b, λ∗ ≥ 0 and hi(x
∗) ≤ 0. The above implies that all inequalities

are actually equalities, i.e., we must have:

x∗ ∈ argmin
x∈Rn

L(x, ν∗, λ∗) and λ∗ihi(x
∗) = 0 ∀i = 1, . . . ,m.

The conditions (5) thus become the KKT conditions:
x∗ ∈ argminx∈Rn L(x, ν∗, λ∗)

λ∗ihi(x
∗) = 0 ∀i = 1, . . . ,m (complementary slackness)

Ax∗ = b, hi(x
∗) ≤ 0 ∀i = 1, . . . ,m (primal feasibility)

λ∗ ≥ 0 (dual feasibility).

(6)

EXERCISE: The goal of this exercise is to sketch a direct proof of strong duality for the primal-
dual pair of problems (3)-(4), assuming Slater’s condition holds. For simplicity we omit the linear
equality constraints. Define the convex set K = {(t0, t1, . . . , tm) ∈ Rm+1 : ∃x ∈ Rn with f(x) ≤
t0, hi(x) ≤ ti ∀i}, and note that f∗ = inf{t0 : (t0, 0, . . . , 0) ∈ K}. (a) Use the supporting hyperplane
theorem to show the existence of (λi) ≥ 0 and b ∈ R such that λ0f(x) +

∑m
i=1 λihi(x) ≥ b for all

x ∈ Rn, and λ0f
∗ = b. (b) Use Slater’s condition to argue that λ0 > 0. Conclude.

Example: dual decomposition Duality can be a very useful tool algorithmically. Consider an
optimization problem of the form

min
x∈Rn

f1(x) + f2(x).

We assume the functions f1 and f2 are held on two different computers/devices, e.g., the functions
fi involve some training data that cannot be shared. We “decouple” the problem by introducing a
new variable y and enforcing the constraint x = y:

min
x,y∈Rn

f1(x) + f2(y) s.t. x = y.

The Lagrangian of this problem is L(x, y, λ) = f1(x)+f2(y)+〈λ, x− y〉 = (f1(x)+〈λ, x〉)+(f2(y)−
〈λ, y〉). The dual function is

g(λ) = min
x,y∈Rn

L(x, y, λ) = min
x∈Rn

(f1(x) + 〈λ, x〉) + min
y∈Rn

(f2(y)− 〈λ, y〉)
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and the dual problem is to maximize g(λ). We have already seen that g is concave, as it is the
pointwise minimum of linear functions. Furthermore a supgradient3 for g is given by x∗(λ)− y∗(λ)
where x∗(λ) and y∗(λ) are minimizers in the definition of g. Thus a supgradient method to maximize
g takes the form: for k = 0, 1, . . .

Compute x∗(λk) ∈ argminx∈Rn{f1(x) + 〈λk, x〉}
and y∗(λk) ∈ argminy∈Rn{f2(y)− 〈λk, y〉}

Update λk+1 = λk + tk(x
∗(λk)− y∗(λk))

where tk is a step size. The advantage of this method is that it only requires separate minimizations
of f1 and f2, and so the computations of x∗(λk) and of y∗(λk) can be done separately (and in
parallel) on the devices where each fi is known. The optimal points x∗(λk) and of y∗(λk) are then
communicated to the central server, who updates λ and sends it back to the devices holding f1, f2,
etc.

3A supgradient for a concave function f at x is a vector q s.t. f(y) ≤ f(x) + 〈q, y − x〉 for all y.
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