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9 Projection operator, and projected (sub)gradient methods

Projection operator If C ⊂ Rn is a closed convex set, the Euclidean projection on C is defined
by

projC(y) = argmin
x∈C

‖x− y‖22. (1)

Observe that the projection mapping satisfies

〈y − projC(y), x− projC(y)〉 ≤ 0 ∀x ∈ C. (2)

(This is precisely the optimality condition written for (1)). The inequality above can in fact be
summarized as y−projC(y) ∈ NC(projC(y)). It immediately follows from (2) that projC satisfies

‖projC(y)− projC(z)‖22 ≤ 〈y − z,projC(y)− projC(z)〉

which implies, that projC is nonexpansive

‖projC(y)− projC(z)‖2 ≤ ‖y − z‖2
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Figure 1: Projection operator (denoted pC in the figure) on a closed convex set C. Grey shaded
region is the normal cone NC(projC(y)).

Projected (sub)gradient method Consider the constrained minimization problem

min
x∈C

f(x).

The projected (sub)gradient method has iterates

xk+1 = projC(xk − tkgk) (3)

where gk ∈ ∂f(xk); if f is smooth then of course we have gk = ∇f(xk). Note that the fixed
point equation of the iterates (3) is x∗ = projC(x∗ − tg(x∗)) where g(x∗) ∈ ∂f(x∗), which is
equivalent, by the properties of the projection operator, that −g(x∗) ∈ NC(x∗), and so in particular
0 ∈ ∂(f + IC)(x∗).

One can easily modify the convergence proofs performed in the unconstrained case, to obtain
quantitative rates on the convergence, depending on the properties of f . The rates we obtain are
exactly the same as in the unconstrained case. We briefly summarize the changes needed for the
convergence proofs:
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• Nonsmooth f (subgradient method): we use the nonexpansive property of projC to get

‖xk+1 − x∗‖22 = ‖projC(xk − tkgk)− projC(x∗)‖22 ≤ ‖xk − tkgk − x∗‖22

and the rest of the proof is the same as the standard subgradient method.

• f is L-smooth (gradient method): Write x̃ = x− t∇f(x) and x+ = projC(x̃). We have

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+

L

2
‖x+ − x‖22.

By expressing ∇f(x) = −(x̃−x)/t = −(x̃−x+ +x+−x)/t and using the property (2) about
the projection we get

f(x+) ≤ f(x)− 1

t
‖x+ − x‖22(1− Lt/2) = f(x)− 1

2t
‖x+ − x‖22.

The rest of the proof is exactly the same.

• f is m-strongly and L-smooth: using the nonexpansive property of projC , and the fact that
x∗ = projC(x∗ − t∇f(x∗)), we have ‖x+ − x∗‖2 ≤ ‖x − x∗ − t(∇f(x) −∇f(x∗))‖2, and the
proof follows exactly the same lines as in Lecture 3.

The projected gradient method is only a suitable method when the projection map projC can
be easily computed, e.g., when C = {x : ‖x‖∞ ≤ r}, C = {x : x ≥ 0 and

∑n
i=1 xi = 1}, etc.

Computing the projection on a general convex set however is itself a nontrivial convex optimization
problem.

EXERCISE: Give explicit expressions for the projection maps on the following sets: Rn
+ = {x ∈

Rn : x ≥ 0}, {x ∈ Rn : ‖x‖∞ ≤ 1}, {x ∈ Rn : ‖x‖2 ≤ 1}.
EXERCISE: Explain how to efficiently compute the projection on the unit simplex C = {x ∈

Rn : x ≥ 0 and
∑n

i=1 xi = 1}. (Hint: consider solving the dual problem).
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