
Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

Exercise sheet 1 Last updated: Feb 1st, 2023

You can return your solutions to questions 1 and 6 to get them marked. If so, please upload them
on Moodle by Tuesday 7th February 10am.

1. (*) Prove that the following functions are convex on their domain. Also provide an expression
for the gradient and Hessian (if applicable).

(a) f(x) = ‖Ax− b‖22 where x ∈ Rn

(b) f(x) = log(
∑n

i=1 e
xi) where x ∈ Rn

(c) f(x) = sum of k largest components of x, where x ∈ Rn and k ∈ {1, . . . , n}. (for
example, f(x) = maxi=1,...,n xi when k = 1, and f(x) = x1 + · · ·+ xn when k = n.)

(d) f(X) = largest eigenvalue of X (X real symmetric n× n matrix)

(e) f(X) = − log detX where X is a symmetric positive definite matrix

(f) f(x, y) =
∑n

i=1 xi log(xi/yi) where x, y ∈ Rn
+

2. Show that if f : Rn → R is convex, then the sublevel sets St = {x ∈ Rn : f(x) ≤ t} are
convex, for all t. Is the converse true? Prove or give a counterexample.

3. (a) Show that if f : Rn → R is convex, then its perspective function Pf (x, t) = tf(x/t) is
convex for t > 0.
(b) Show that if g : Rn×Rm → R is convex, then f(x) = infy∈Rm g(x, y) is convex. Example:
Assuming g is a convex quadratic, i.e., g(x, y) = 〈x,Ax〉+〈y, Cy〉+2 〈x,By〉, where

[
A B
BT C

]
�

0, give an explicit expression for f(x).

4. Let f : Rn → R be a convex twice differentiable function. (a) Show that f is m-strongly
convex with respect to the Euclidean norm iff f − (m/2)‖x‖22 is convex. (b) Show that f is
L-smooth with respect to the Euclidean norm iff (L/2)‖x‖22 − f is convex.

5. Show that if f : Rn → R is convex and L-smooth, and x∗ ∈ int dom(f) is a minimizer of f ,
then for any y ∈ dom(f)

f(y)− f(x∗) ≤ L

2
‖y − x∗‖2.

Show further, that if dom(f) = Rn, then for all y ∈ Rn

1

2L
‖∇f(y)‖2∗ ≤ f(y)− f(x∗).

6. (*) Show that if f : Rn → R is m-strongly convex, and x∗ ∈ int dom(f) is the minimizer of
f , then for any y ∈ dom(f)

m

2
‖y − x∗‖2 ≤ f(y)− f(x∗) ≤ 1

2m
‖∇f(y)‖2∗.
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7. (a) Show that the bound of Theorem 4.1 (Lecture 4) on the convergence of the gradient
method for L-smooth functions is tight up to constant factors. To do this consider running k
iterations of the gradient method on the Huber function

f(x) =

{
x2/2 if |x| ≤ 1

|x| − 1/2 else

with initial point x0 = 2k.

(b) Prove a similar result in the strongly convex case (Theorem 4.2). To do this consider the
function f(x) = (mx21 + Lx22)/2 with initial point x0 = (1/m, 1/L).

8. Prove that the gradient method, with the following backtracking line search, converges at the
rate O(1/k), assuming the function is L-smooth: at each iteration k, initialize tk to 1 and keep
updating tk ← βtk (where β ∈ (0, 1)) until f(xk − tk∇f(xk)) ≤ f(xk)− (1/2)tk‖∇f(xk)‖22.

9. Consider the problem of minimizing a convex function f(x) on a closed convex set C, i.e., we
want to compute minx∈C f(x). The projected gradient method works as follows: starting from
x0 ∈ C, let xk+1 = PC(xk − tk∇f(xk)) where PC is the Euclidean projection on C defined by

PC(x) = argmin
y∈C

‖y − x‖22.

By adapting the convergence proof of the gradient method seen in lecture, show that the
projected gradient method converges with a rate O(1/k) when ∇f is assumed L-Lipschitz,
and the step size tk is fixed tk = t ∈ (0, 1/L].

10. Implement the gradient method and fast gradient method to minimize the following convex
function (logistic regression loss)

f(x) =
N∑
i=1

log
[
1 + exp(yia

T
i x)
]

where a1, . . . , aN ∈ Rn and y1, . . . , yN ∈ {−1,+1} are randomly generated. Take N = 50 and
n = 30. Plot f(xk)− f∗ as a function of k. Comment.
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