Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

Exercise sheet 1 Last updated: Feb 1st, 2023

You can return your solutions to questions 1 and 6 to get them marked. If so, please upload them
on Moodle by Tuesday 7th February 10am.

1. (*) Prove that the following functions are convex on their domain. Also provide an expression
for the gradient and Hessian (if applicable).
(a) f(z) = | Az — b where z € R"
(b) f(x) =log(> i, ") where z € R"

(¢) f(x) = sum of k largest components of z, where z € R™ and k € {1,...,n}. (for
example, f(z) = max;j—1,__,2; when k=1, and f(z) =z +--- + 2z, when k =n.)

(d) f(X) = largest eigenvalue of X (X real symmetric n X n matrix)
(e) f(X)= —logdet X where X is a symmetric positive definite matrix
(f) flz,y) =1, vilog(xi/y;) where z,y € R}
2. Show that if f : R® — R is convex, then the sublevel sets S; = {x € R" : f(x) < t} are

convex, for all t. Is the converse true? Prove or give a counterexample.

3. (a) Show that if f : R” — R is convex, then its perspective function Py(z,t) = tf(z/t) is

convex for t > 0.
(b) Show that if g : R” x R™ — R is convex, then f(z) = inf,cgm g(x,y) is convex. Example:
A B

Assuming g is a convex quadratic, i.e., g(z,y) = (x, Az)+ (y, Cy)+2 (x, By), where [BT O] -
0, give an explicit expression for f(z).

4. Let f : R™ — R be a convex twice differentiable function. (a) Show that f is m-strongly
convex with respect to the Euclidean norm iff f — (m/2)||x|3 is convex. (b) Show that f is
L-smooth with respect to the Euclidean norm iff (L/2)||z||3 — f is convex.

5. Show that if f : R® — R is convex and L-smooth, and * € int dom(f) is a minimizer of f,
then for any y € dom(f)

F) £ < Sy — |1

Show further, that if dom(f) = R", then for all y € R"
1 2
i < _ *)
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6. (*) Show that if f : R® — R is m-strongly convex, and z* € int dom(f) is the minimizer of
f, then for any y € dom(f)
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7.

10.

(a) Show that the bound of Theorem 4.1 (Lecture 4) on the convergence of the gradient
method for L-smooth functions is tight up to constant factors. To do this consider running %
iterations of the gradient method on the Huber function

_ fa?)2 if |[z| <1
f) = {]m| —1/2  else

with initial point x¢ = 2k.

(b) Prove a similar result in the strongly convex case (Theorem 4.2). To do this consider the
function f(x) = (ma? + Lx3)/2 with initial point xo = (1/m,1/L).

. Prove that the gradient method, with the following backtracking line search, converges at the

rate O(1/k), assuming the function is L-smooth: at each iteration k, initialize ¢, to 1 and keep
updating tj, < Sty (where 8 € (0,1)) until f(zr — t,Vf(zk)) < flar) — (1/2)t[V f (@) ]3.

. Consider the problem of minimizing a convex function f(z) on a closed convex set C, i.e., we

want to compute mingec f(z). The projected gradient method works as follows: starting from
xg € C, let x11 = Po(zr — txVf(xr)) where Po is the Euclidean projection on C' defined by

Pc(x) = argmin ||y — z||3.
yeC
By adapting the convergence proof of the gradient method seen in lecture, show that the

projected gradient method converges with a rate O(1/k) when Vf is assumed L-Lipschitz,
and the step size t, is fixed t, =t € (0,1/L].

Implement the gradient method and fast gradient method to minimize the following convex
function (logistic regression loss)

N

f(w) =Y log [1+ exp(yia] z)]

1=1

where aq,...,ay € R" and y1,...,yny € {—1,+1} are randomly generated. Take N = 50 and
n = 30. Plot f(zr) — f* as a function of k. Comment.



