Exercise sheet 1

Last updated: Feb 1st, 2023
You can return your solutions to questions 1 and 6 to get them marked. If so, please upload them on Moodle by Tuesday 7th February 10am.

1. (*) Prove that the following functions are convex on their domain. Also provide an expression for the gradient and Hessian (if applicable).
(a) $f(x)=\|A x-b\|_{2}^{2}$ where $x \in \mathbb{R}^{n}$
(b) $f(x)=\log \left(\sum_{i=1}^{n} e^{x_{i}}\right)$ where $x \in \mathbb{R}^{n}$
(c) $f(x)=$ sum of k largest components of x, where $x \in \mathbb{R}^{n}$ and $k \in\{1, \ldots, n\}$. (for example, $f(x)=\max _{i=1, \ldots, n} x_{i}$ when $k=1$, and $f(x)=x_{1}+\cdots+x_{n}$ when $k=n$.)
(d) $f(X)=$ largest eigenvalue of $X(X$ real symmetric $n \times n$ matrix $)$
(e) $f(X)=-\log \operatorname{det} X$ where X is a symmetric positive definite matrix
(f) $f(x, y)=\sum_{i=1}^{n} x_{i} \log \left(x_{i} / y_{i}\right)$ where $x, y \in \mathbb{R}_{+}^{n}$
2. Show that if $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex, then the sublevel sets $S_{t}=\left\{x \in \mathbb{R}^{n}: f(x) \leq t\right\}$ are convex, for all t. Is the converse true? Prove or give a counterexample.
3. (a) Show that if $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex, then its perspective function $P_{f}(x, t)=t f(x / t)$ is convex for $t>0$.
(b) Show that if $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is convex, then $f(x)=\inf _{y \in \mathbb{R}^{m}} g(x, y)$ is convex. Example: Assuming g is a convex quadratic, i.e., $g(x, y)=\langle x, A x\rangle+\langle y, C y\rangle+2\langle x, B y\rangle$, where $\left[\begin{array}{c}A \\ B^{T}\end{array} C_{C}^{B}\right] \succ$ 0 , give an explicit expression for $f(x)$.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex twice differentiable function. (a) Show that f is m-strongly convex with respect to the Euclidean norm iff $f-(m / 2)\|x\|_{2}^{2}$ is convex. (b) Show that f is L-smooth with respect to the Euclidean norm iff $(L / 2)\|x\|_{2}^{2}-f$ is convex.
5. Show that if $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex and L-smooth, and $x^{*} \in \operatorname{int} \operatorname{dom}(f)$ is a minimizer of f, then for any $y \in \operatorname{dom}(f)$

$$
f(y)-f\left(x^{*}\right) \leq \frac{L}{2}\left\|y-x^{*}\right\|^{2} .
$$

Show further, that if $\operatorname{dom}(f)=\mathbb{R}^{n}$, then for all $y \in \mathbb{R}^{n}$

$$
\frac{1}{2 L}\|\nabla f(y)\|_{*}^{2} \leq f(y)-f\left(x^{*}\right) .
$$

6. (*) Show that if $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is m-strongly convex, and $x^{*} \in \operatorname{int} \operatorname{dom}(f)$ is the minimizer of f, then for any $y \in \operatorname{dom}(f)$

$$
\frac{m}{2}\left\|y-x^{*}\right\|^{2} \leq f(y)-f\left(x^{*}\right) \leq \frac{1}{2 m}\|\nabla f(y)\|_{*}^{2} .
$$

7. (a) Show that the bound of Theorem 4.1 (Lecture 4) on the convergence of the gradient method for L-smooth functions is tight up to constant factors. To do this consider running k iterations of the gradient method on the Huber function

$$
f(x)= \begin{cases}x^{2} / 2 & \text { if }|x| \leq 1 \\ |x|-1 / 2 & \text { else }\end{cases}
$$

with initial point $x_{0}=2 k$.
(b) Prove a similar result in the strongly convex case (Theorem 4.2). To do this consider the function $f(x)=\left(m x_{1}^{2}+L x_{2}^{2}\right) / 2$ with initial point $x_{0}=(1 / m, 1 / L)$.
8. Prove that the gradient method, with the following backtracking line search, converges at the rate $O(1 / k)$, assuming the function is L-smooth: at each iteration k, initialize t_{k} to 1 and keep updating $t_{k} \leftarrow \beta t_{k}($ where $\beta \in(0,1))$ until $f\left(x_{k}-t_{k} \nabla f\left(x_{k}\right)\right) \leq f\left(x_{k}\right)-(1 / 2) t_{k}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}$.
9. Consider the problem of minimizing a convex function $f(x)$ on a closed convex set C, i.e., we want to compute $\min _{x \in C} f(x)$. The projected gradient method works as follows: starting from $x_{0} \in C$, let $x_{k+1}=P_{C}\left(x_{k}-t_{k} \nabla f\left(x_{k}\right)\right)$ where P_{C} is the Euclidean projection on C defined by

$$
P_{C}(x)=\underset{y \in C}{\operatorname{argmin}}\|y-x\|_{2}^{2} .
$$

By adapting the convergence proof of the gradient method seen in lecture, show that the projected gradient method converges with a rate $O(1 / k)$ when ∇f is assumed L-Lipschitz, and the step size t_{k} is fixed $t_{k}=t \in(0,1 / L]$.
10. Implement the gradient method and fast gradient method to minimize the following convex function (logistic regression loss)

$$
f(x)=\sum_{i=1}^{N} \log \left[1+\exp \left(y_{i} a_{i}^{T} x\right)\right]
$$

where $a_{1}, \ldots, a_{N} \in \mathbb{R}^{n}$ and $y_{1}, \ldots, y_{N} \in\{-1,+1\}$ are randomly generated. Take $N=50$ and $n=30$. Plot $f\left(x_{k}\right)-f^{*}$ as a function of k. Comment.

