
Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

Exercise sheet 2

You can return your solutions to questions 7 and 8 to get them marked. If so, please upload them
on Moodle before Tuesday 21/02 at 5pm.

1. Let f : Rn → R convex. Show that f is G-Lipschitz (with respect to the `2 norm) iff ‖g‖2 ≤ G
for all g ∈ ∂f(x) for all x ∈ Rn.

2. (Directional derivatives) Let f : Rn → R be convex. Let x ∈ int dom(f).

(i) Show that the directional derivative of f

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t

is well-defined and finite for any h, even if f is not differentiable at x. [Hint: show that the
limt→0+ can be replaced by inft→0+.]
(ii) Show that f ′(x;h) is homogeneous in h, i.e., f ′(x;λh) = λf ′(x;h) for all λ > 0. Show
that f ′(x;h) is convex in h.
(iii) Let g be a subgradient for v 7→ f ′(x; v) at v = h. Show that f ′(x;h) = 〈g, h〉 and that
f ′(x; v) ≥ 〈g, v〉 for all v. Deduce from the latter that g ∈ ∂f(x).
(iv) Deduce from the above that f ′(x;h) = maxg∈∂f(x) 〈g, h〉.

3. (Subgradient calculus) Let f : Rn → R be a convex function defined on the whole of Rn, and
let A : Rm → Rn be a linear map. Let h(x) = f(Ax). The goal of this exercise is to show
that ∂h(x) = A∗∂f(Ax).
(i) Let x ∈ Rn. Show that h′(x; v) = f ′(Ax;Av), where h′(x; v) is the directional derivative
defined in the previous exercise.
(ii) Deduce that for any v, maxg∈∂h(x) 〈g, v〉 = maxg∈A∗∂f(Ax) 〈g, v〉.
(iv) Conclude.

4. Let f : Rn → R be a convex function and x ∈ int dom f such that ∂f(x) is a singleton,
namely ∂f(x) = {g}. Using Question 2(iv), show that f is differentiable at x, i.e.,

f(x+ h)− f(x)− 〈g, h〉
‖h‖

→ 0 as h→ 0.

5. Let f(x) = maxi=1,...,m(aTi x + bi) where a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R. Given x ∈ Rn

let I(x) =
{
i ∈ {1, . . . ,m} : aTi x+ bi = f(x)

}
. Show that the subdifferential of f at x is given

by
∂f(x) = conv {ai : i ∈ I(x)} (1)

where conv(X) denotes the convex hull of X.

6. Compute the normal cones NC(x) for x ∈ C for the following convex sets
(a) C = L = {x ∈ Rn : Ax = b}, where A ∈ Rm×n with m < n (subspace)
(b) C = Rn

+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}
(c) C = Sn

+ = {X ∈ Sn : X � 0} (n× n real symmetric positive semidefinite matrices)
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7. (*) (a) Let f : Rn → R differentiable convex function and C a closed convex set. Show that
x∗ is a minimizer of f(x) over x ∈ C if, and only if, −∇f(x∗) ∈ NC(x∗)
(b) Use the subgradient calculus rules to show that x∗ is a solution of the following linear
program

min 〈c, x〉 s.t. x ≥ 0, Ax = b

(where A ∈ Rm×n, b ∈ Rm, c ∈ Rn) if, and only if, there exist s∗ ≥ 0 and z∗ ∈ Rm such that
x∗ ≥ 0, Ax∗ = b

s∗ ≥ 0, AT z∗ + s∗ = c

x∗i s
∗
i = 0 ∀i = 1, . . . , n.

8. (*) Show that the subgradient method with step size ti = (f(xi)−f∗)/‖gi‖22 (known as Polyak
step size) gives iterates fbest,k that converge to f∗ at the rate 1/

√
k

9. (Lower complexity bound for the subgradient method) In this exercise we prove a lower
complexity bound for nonsmooth convex optimization. Consider an algorithm that starts at
x0 = 0 and such that when applied to a function f , the (i+ 1)’th iterate satisfies

xi+1 ∈ span {g0, . . . , gi} (2)

where g0 ∈ ∂f(x0) = ∂f(0), . . . , gi ∈ ∂f(xi).

(a) Consider the function

f(x) = max
i=1,...,n

xi +
1

2
‖x‖22

with x ∈ Rn. Compute ∂f(x) for any x.

(b) Compute f∗ = minx∈Rn f(x) and find a minimizer x∗.

(c) Show that f is (1 + R)-Lipschitz on the Euclidean ball {x ∈ Rn : ‖x‖2 ≤ R} [Hint:
consider ‖g‖2 for g ∈ ∂f(x).]

(d) A first-order oracle for f gives, for any x ∈ Rn, an element g ∈ ∂f(x). Show that one
can design a specific first-order oracle for f ensuring that xi satisfying (2) is always
supported on the first i components only (i.e., the components i+ 1, . . . , n are zero).

(e) Set n = k + 1. Show that for any algorithm satisfying (2), the following holds:

fbest,k − f∗

G‖x0 − x∗‖2
≥ c√

k + 1

for a constant c > 0, where fbest,k = min{f(x0), . . . , f(xk)} and G is the Lipschitz
constant of f on the Euclidean ball of radius ‖x0 − x∗‖2 centered at x0.

10. Implement the subgradient method to minimize ‖Ax − b‖1 where A and b are generated at
random. Experiment with different choices of step size.
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