Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

Exercise sheet 2

You can return your solutions to questions 7 and 8 to get them marked. If so, please upload them
on Moodle before Tuesday 21/02 at 5pm.

1. Let f: R™ — R convex. Show that f is G-Lipschitz (with respect to the ¢3 norm) iff ||g|ls < G
for all g € 0f(x) for all z € R™.

2. (Directional derivatives) Let f : R” — R be convex. Let = € int dom(f).
(i) Show that the directional derivative of f

is well-defined and finite for any h, even if f is not differentiable at x. [Hint: show that the
lim,_,o+ can be replaced by inf,_,o+.]

(ii) Show that f’(x;h) is homogeneous in h, i.e., f'(x;Ah) = Af'(x;h) for all A > 0. Show
that f’(x;h) is convex in h.

(iii) Let g be a subgradient for v — f’(x;v) at v = h. Show that f'(z;h) = (g, h) and that
1 (x;v) > (g,v) for all v. Deduce from the latter that g € df(z).

(iv) Deduce from the above that f'(z; h) = maxgeas(q) (9, h)-

3. (Subgradient calculus) Let f : R™ — R be a convex function defined on the whole of R", and
let A:R™ — R" be a linear map. Let h(z) = f(Azx). The goal of this exercise is to show
that Oh(z) = A*0f(Ax).

(i) Let x € R™. Show that h'(z;v) = f'(Az; Av), where h/(x;v) is the directional derivative
defined in the previous exercise.

(ii) Deduce that for any v, maxgcan(z) (9, V) = MaXge 4o (Ax) (95 V)-

(iv) Conclude.

4. Let f : R® — R be a convex function and z € intdom f such that df(z) is a singleton,
namely 0f(x) = {g}. Using Question 2(iv), show that f is differentiable at z, i.e.,

fl+h) - fz)—{g,h)

—0 as h—0.
Al

5. Let f(x) = maxizljwm(aiTx + b;) where ay,...,a, € R" and by,...,b, € R. Given x € R"
let I(z) = {i € {1,...,m}:alx+ b = f(x)}. Show that the subdifferential of f at z is given
by

Of () =conv{a;:i€I(x)} (1)

where conv(X) denotes the conver hull of X.

6. Compute the normal cones N¢(z) for € C for the following convex sets
(a) C =L ={xeR": Ax = b}, where A € R™*"™ with m < n (subspace)
b)) C=R} ={zeR":2;,>0Vi=1,...,n}
(c) C=8% ={X €8": X =0} (n x n real symmetric positive semidefinite matrices)
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7. (*) (a) Let f: R™ — R differentiable convex function and C' a closed convex set. Show that
x* is a minimizer of f(z) over x € C if, and only if, =V f(z*) € N¢(z*)
(b) Use the subgradient calculus rules to show that z* is a solution of the following linear
program
min (c,z) s.t. x>0, Ax =15

(where A € R™*™ b € R™, ¢ € R") if, and only if, there exist s* > 0 and z* € R such that

*>0,Ax* =b
s> 0,AT2 +s* =¢
xis; =0 Vi=1,...,n.

8. (*) Show that the subgradient method with step size t; = (f(x;) — f*)/||gi||3 (known as Polyak
step size) gives iterates fuest ; that converge to f* at the rate 1/ Vk

9. (Lower complexity bound for the subgradient method) In this exercise we prove a lower
complexity bound for nonsmooth convex optimization. Consider an algorithm that starts at
xo = 0 and such that when applied to a function f, the (i + 1)’th iterate satisfies

Ti4+1 S spamn {907 o 792} (2)

where go € 0f(zo) = 9f(0),...,g; € Of (x;).
(a) Consider the function

1
fl@) = max @+ |3
i=1,....,n 2

with z € R". Compute 0f(z) for any z.

(b) Compute f* = mingegn f(z) and find a minimizer x*.

(c) Show that f is (1 + R)-Lipschitz on the Euclidean ball {x € R" : |z|l2 < R} [Hint:
consider ||g||2 for g € 9f(x).]

(d) A first-order oracle for f gives, for any x € R", an element g € df(x). Show that one
can design a specific first-order oracle for f ensuring that z; satisfying (2) is always
supported on the first ¢ components only (i.e., the components i + 1,...,n are zero).

(e) Set n =k + 1. Show that for any algorithm satisfying (2), the following holds:

fbest,k - f* c

Gllzo —z*|2 — VE+1

for a constant ¢ > 0, where fyestr = min{f(zo),..., f(zx)} and G is the Lipschitz
constant of f on the Euclidean ball of radius ||zg — z*||2 centered at xy.

10. Implement the subgradient method to minimize ||Az — b||; where A and b are generated at
random. Experiment with different choices of step size.



