Exercise sheet 2

You can return your solutions to questions 7 and 8 to get them marked. If so, please upload them on Moodle before Tuesday 21/02 at 5pm.

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex. Show that f is G-Lipschitz (with respect to the ℓ_{2} norm) iff $\|g\|_{2} \leq G$ for all $g \in \partial f(x)$ for all $x \in \mathbb{R}^{n}$.
2. (Directional derivatives) Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be convex. Let $x \in \operatorname{int} \operatorname{dom}(f)$.
(i) Show that the directional derivative of f

$$
f^{\prime}(x ; h):=\lim _{t \rightarrow 0^{+}} \frac{f(x+t h)-f(x)}{t}
$$

is well-defined and finite for any h, even if f is not differentiable at x. [Hint: show that the $\lim _{t \rightarrow 0^{+}}$can be replaced by $\inf _{t \rightarrow 0^{+}}$.]
(ii) Show that $f^{\prime}(x ; h)$ is homogeneous in h, i.e., $f^{\prime}(x ; \lambda h)=\lambda f^{\prime}(x ; h)$ for all $\lambda>0$. Show that $f^{\prime}(x ; h)$ is convex in h.
(iii) Let g be a subgradient for $v \mapsto f^{\prime}(x ; v)$ at $v=h$. Show that $f^{\prime}(x ; h)=\langle g, h\rangle$ and that $f^{\prime}(x ; v) \geq\langle g, v\rangle$ for all v. Deduce from the latter that $g \in \partial f(x)$.
(iv) Deduce from the above that $f^{\prime}(x ; h)=\max _{g \in \partial f(x)}\langle g, h\rangle$.
3. (Subgradient calculus) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function defined on the whole of \mathbb{R}^{n}, and let $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear map. Let $h(x)=f(A x)$. The goal of this exercise is to show that $\partial h(x)=A^{*} \partial f(A x)$.
(i) Let $x \in \mathbb{R}^{n}$. Show that $h^{\prime}(x ; v)=f^{\prime}(A x ; A v)$, where $h^{\prime}(x ; v)$ is the directional derivative defined in the previous exercise.
(ii) Deduce that for any $v, \max _{g \in \partial h(x)}\langle g, v\rangle=\max _{g \in A^{*} \partial f(A x)}\langle g, v\rangle$.
(iv) Conclude.
4. Let $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a convex function and $x \in \operatorname{int} \operatorname{dom} f$ such that $\partial f(x)$ is a singleton, namely $\partial f(x)=\{g\}$. Using Question 2(iv), show that f is differentiable at x, i.e.,

$$
\frac{f(x+h)-f(x)-\langle g, h\rangle}{\|h\|} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 .
$$

5. Let $f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$ where $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ and $b_{1}, \ldots, b_{m} \in \mathbb{R}$. Given $x \in \mathbb{R}^{n}$ let $I(x)=\left\{i \in\{1, \ldots, m\}: a_{i}^{T} x+b_{i}=f(x)\right\}$. Show that the subdifferential of f at x is given by

$$
\begin{equation*}
\partial f(x)=\operatorname{conv}\left\{a_{i}: i \in I(x)\right\} \tag{1}
\end{equation*}
$$

where $\operatorname{conv}(X)$ denotes the convex hull of X.
6. Compute the normal cones $N_{C}(x)$ for $x \in C$ for the following convex sets
(a) $C=L=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$, where $A \in \mathbb{R}^{m \times n}$ with $m<n$ (subspace)
(b) $C=\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0 \forall i=1, \ldots, n\right\}$
(c) $C=\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n}: X \succeq 0\right\}(n \times n$ real symmetric positive semidefinite matrices)
7. (*) (a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable convex function and C a closed convex set. Show that x^{*} is a minimizer of $f(x)$ over $x \in C$ if, and only if, $-\nabla f\left(x^{*}\right) \in N_{C}\left(x^{*}\right)$
(b) Use the subgradient calculus rules to show that x^{*} is a solution of the following linear program

$$
\min \langle c, x\rangle \text { s.t. } x \geq 0, A x=b
$$

(where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$) if, and only if, there exist $s^{*} \geq 0$ and $z^{*} \in \mathbb{R}^{m}$ such that

$$
\left\{\begin{array}{l}
x^{*} \geq 0, A x^{*}=b \\
s^{*} \geq 0, A^{T} z^{*}+s^{*}=c \\
x_{i}^{*} s_{i}^{*}=0 \forall i=1, \ldots, n
\end{array}\right.
$$

8. (*) Show that the subgradient method with step size $t_{i}=\left(f\left(x_{i}\right)-f^{*}\right) /\left\|g_{i}\right\|_{2}^{2}$ (known as Polyak step size) gives iterates $f_{\text {best, } k}$ that converge to f^{*} at the rate $1 / \sqrt{k}$
9. (Lower complexity bound for the subgradient method) In this exercise we prove a lower complexity bound for nonsmooth convex optimization. Consider an algorithm that starts at $x_{0}=0$ and such that when applied to a function f, the $(i+1)$ 'th iterate satisfies

$$
\begin{equation*}
x_{i+1} \in \operatorname{span}\left\{g_{0}, \ldots, g_{i}\right\} \tag{2}
\end{equation*}
$$

where $g_{0} \in \partial f\left(x_{0}\right)=\partial f(0), \ldots, g_{i} \in \partial f\left(x_{i}\right)$.
(a) Consider the function

$$
f(x)=\max _{i=1, \ldots, n} x_{i}+\frac{1}{2}\|x\|_{2}^{2}
$$

with $x \in \mathbb{R}^{n}$. Compute $\partial f(x)$ for any x.
(b) Compute $f^{*}=\min _{x \in \mathbb{R}^{n}} f(x)$ and find a minimizer x^{*}.
(c) Show that f is $(1+R)$-Lipschitz on the Euclidean ball $\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq R\right\}$ [Hint: consider $\|g\|_{2}$ for $g \in \partial f(x)$.]
(d) A first-order oracle for f gives, for any $x \in \mathbb{R}^{n}$, an element $g \in \partial f(x)$. Show that one can design a specific first-order oracle for f ensuring that x_{i} satisfying (2) is always supported on the first i components only (i.e., the components $i+1, \ldots, n$ are zero).
(e) Set $n=k+1$. Show that for any algorithm satisfying (2), the following holds:

$$
\frac{f_{\text {best }, k}-f^{*}}{G\left\|x_{0}-x^{*}\right\|_{2}} \geq \frac{c}{\sqrt{k+1}}
$$

for a constant $c>0$, where $f_{\text {best }, k}=\min \left\{f\left(x_{0}\right), \ldots, f\left(x_{k}\right)\right\}$ and G is the Lipschitz constant of f on the Euclidean ball of radius $\left\|x_{0}-x^{*}\right\|_{2}$ centered at x_{0}.
10. Implement the subgradient method to minimize $\|A x-b\|_{1}$ where A and b are generated at random. Experiment with different choices of step size.

