Exercise sheet 2

You can return your solutions to questions 7 and 8 to get them marked. If so, please upload them on Moodle before Tuesday 21/02 at 5pm.

- 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ convex. Show that f is G-Lipschitz (with respect to the ℓ_2 norm) iff $||g||_2 \leq G$ for all $g \in \partial f(x)$ for all $x \in \mathbb{R}^n$.
- 2. (Directional derivatives) Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex. Let $x \in \operatorname{int} \operatorname{dom}(f)$.
 - (i) Show that the directional derivative of f

$$f'(x;h) := \lim_{t \to 0^+} \frac{f(x+th) - f(x)}{t}$$

is well-defined and finite for any h, even if f is not differentiable at x. [Hint: show that the $\lim_{t\to 0^+} can \ be \ replaced \ by \ \inf_{t\to 0^+}$.]

(ii) Show that f'(x;h) is homogeneous in h, i.e., $f'(x;\lambda h) = \lambda f'(x;h)$ for all $\lambda > 0$. Show that f'(x;h) is convex in h.

(iii) Let g be a subgradient for $v \mapsto f'(x; v)$ at v = h. Show that $f'(x; h) = \langle g, h \rangle$ and that $f'(x; v) \ge \langle g, v \rangle$ for all v. Deduce from the latter that $g \in \partial f(x)$.

(iv) Deduce from the above that $f'(x;h) = \max_{g \in \partial f(x)} \langle g, h \rangle$.

3. (Subgradient calculus) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function defined on the whole of \mathbb{R}^n , and let $A : \mathbb{R}^m \to \mathbb{R}^n$ be a linear map. Let h(x) = f(Ax). The goal of this exercise is to show that $\partial h(x) = A^* \partial f(Ax)$.

(i) Let $x \in \mathbb{R}^n$. Show that h'(x; v) = f'(Ax; Av), where h'(x; v) is the directional derivative defined in the previous exercise.

- (ii) Deduce that for any v, $\max_{g \in \partial h(x)} \langle g, v \rangle = \max_{g \in A^* \partial f(Ax)} \langle g, v \rangle$.
- (iv) Conclude.
- 4. Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a convex function and $x \in \operatorname{int} \operatorname{dom} f$ such that $\partial f(x)$ is a singleton, namely $\partial f(x) = \{g\}$. Using Question 2(iv), show that f is differentiable at x, i.e.,

$$\frac{f(x+h) - f(x) - \langle g, h \rangle}{\|h\|} \to 0 \quad \text{as} \quad h \to 0.$$

5. Let $f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$ where $a_1, \dots, a_m \in \mathbb{R}^n$ and $b_1, \dots, b_m \in \mathbb{R}$. Given $x \in \mathbb{R}^n$ let $I(x) = \{i \in \{1, \dots, m\} : a_i^T x + b_i = f(x)\}$. Show that the subdifferential of f at x is given by

$$\partial f(x) = \operatorname{conv} \left\{ a_i : i \in I(x) \right\}$$
(1)

where $\mathbf{conv}(X)$ denotes the *convex hull* of X.

- 6. Compute the normal cones $N_C(x)$ for $x \in C$ for the following convex sets
 - (a) $C = L = \{x \in \mathbb{R}^n : Ax = b\}$, where $A \in \mathbb{R}^{m \times n}$ with m < n (subspace)
 - (b) $C = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_i \ge 0 \ \forall i = 1, \dots, n\}$
 - (c) $C = \mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} : X \succeq 0\}$ $(n \times n \text{ real symmetric positive semidefinite matrices})$

7. (*) (a) Let $f : \mathbb{R}^n \to \mathbb{R}$ differentiable convex function and C a closed convex set. Show that x^* is a minimizer of f(x) over $x \in C$ if, and only if, $-\nabla f(x^*) \in N_C(x^*)$ (b) Use the subgradient calculus rules to show that x^* is a solution of the following linear

min
$$\langle c, x \rangle$$
 s.t. $x > 0$, $Ax = b$

(where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$) if, and only if, there exist $s^* \ge 0$ and $z^* \in \mathbb{R}^m$ such that

$$\begin{cases} x^* \ge 0, Ax^* = b \\ s^* \ge 0, A^T z^* + s^* = c \\ x_i^* s_i^* = 0 \ \forall i = 1, \dots, n \end{cases}$$

- 8. (*) Show that the subgradient method with step size $t_i = (f(x_i) f^*) / ||g_i||_2^2$ (known as Polyak step size) gives iterates $f_{\text{best},k}$ that converge to f^* at the rate $1/\sqrt{k}$
- 9. (Lower complexity bound for the subgradient method) In this exercise we prove a lower complexity bound for nonsmooth convex optimization. Consider an algorithm that starts at $x_0 = 0$ and such that when applied to a function f, the (i + 1)'th iterate satisfies

$$x_{i+1} \in \operatorname{span} \{g_0, \dots, g_i\} \tag{2}$$

where $g_0 \in \partial f(x_0) = \partial f(0), \dots, g_i \in \partial f(x_i)$.

(a) Consider the function

program

$$f(x) = \max_{i=1,\dots,n} x_i + \frac{1}{2} \|x\|_2^2$$

with $x \in \mathbb{R}^n$. Compute $\partial f(x)$ for any x.

- (b) Compute $f^* = \min_{x \in \mathbb{R}^n} f(x)$ and find a minimizer x^* .
- (c) Show that f is (1 + R)-Lipschitz on the Euclidean ball $\{x \in \mathbb{R}^n : ||x||_2 \le R\}$ [Hint: consider $||g||_2$ for $g \in \partial f(x)$.]
- (d) A first-order oracle for f gives, for any $x \in \mathbb{R}^n$, an element $g \in \partial f(x)$. Show that one can design a specific first-order oracle for f ensuring that x_i satisfying (2) is always supported on the first i components only (i.e., the components $i + 1, \ldots, n$ are zero).
- (e) Set n = k + 1. Show that for any algorithm satisfying (2), the following holds:

$$\frac{f_{\text{best},k} - f^*}{G \|x_0 - x^*\|_2} \ge \frac{c}{\sqrt{k+1}}$$

for a constant c > 0, where $f_{\text{best},k} = \min\{f(x_0), \ldots, f(x_k)\}$ and G is the Lipschitz constant of f on the Euclidean ball of radius $||x_0 - x^*||_2$ centered at x_0 .

10. Implement the subgradient method to minimize $||Ax - b||_1$ where A and b are generated at random. Experiment with different choices of step size.