
Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

Exercise sheet 3

You can return your solutions to questions 5 and 8 to get them marked. If so, please upload them
on Moodle before Tuesday 7/3 at 5pm.

1. Compute the proximal operator of the following functions:

(i) f(x) = (1/2)xTAx where A is positive definite

(ii) f(x) = −
∑n

i=1 log xi

(iii) f(x) = ‖x‖2

2. Let λ > 0 and let f(x) = λg(x/λ) where g is a convex function. Express the proximal operator
of f in terms of that of g.

3. (Bregman subgradient method) Let φ : Rn → R be a smooth and strictly convex function,
and let Dφ be its Bregman divergence. Let f : Rn → R be a potentially nonsmooth convex
function, and consider the following Bregman subgradient method:

xk+1 = argmin
x∈Rn

{tk 〈gk, x− xk〉+Dφ(x|xk)}

where gk ∈ ∂f(xk).
(a) Show that for φ(x) = ‖x‖22/2 we recover the usual subgradient method.
(b) Let ‖ · ‖ be an arbitrary norm on Rn. We assume that φ is 1-strongly convex with respect
to ‖ · ‖. Show that the iterates of the Bregman subgradient method satisfy:

Dφ(x∗|xk+1) ≤ Dφ(x∗|xk) +
1

2
‖tkgk‖2∗ + tk(f(x∗)− f(xk))

where ‖ · ‖∗ is the dual norm of ‖ · ‖. Deduce:

fbest,k − f∗ ≤
Dφ(x∗‖x0)∑k

i=0 ti
+

∑k
i=0 t

2
i ‖gi‖2∗

2
∑k

i=0 ti
.

where fbest,k = min {f(x0), . . . , f(xk)}.

4. Examples: Compute the Fenchel conjugates of the following functions

(a) f(x) = 1
2x

TAx+ bTx

(b) f(x) = ‖x‖ for some norm ‖ · ‖.

5. (*) (Moreau’s identity) Let f : Rn → R be convex and lower semicontinuous. Prove Moreau’s
identity: proxf∗(x) = x− proxf (x).

6. Compute the Lagrangian dual of the following optimization problems

(a) minx∈Rn 〈c, x〉 subject to x ≥ 0, Ax = b, where A ∈ Rm×n

(b) minX∈Sn tr(CX) subject to X � 0, A(X) = b, where A : Sn → Rm is a linear map.
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(c) min ‖x‖1 subject to Ax = b

7. (Smoothing via conjugate functions)

(a) Assume f is a convex function given as f(x) = h∗(Ax + b) where h is convex lower-
semicontinuous, defined on a compact domain D, i.e.,

f(x) = max
y∈D

{
yT (Ax+ b)− h(y)

}
.

Let d be a nonnegative convex function defined on D which is 1-strongly convex with respect
to the Euclidean norm, and consider for µ > 0 the function

fµ(x) = (h+ µd)∗(Ax+ b).

Show that fµ is smooth, with smoothness parameter (with respect to Euclidean norm) L =
‖A‖2/µ where ‖A‖ is the operator norm of A. Further, show that

f − µR ≤ fµ ≤ f

where R = maxd∈D d(x).

(b) Examples: (i) let f(x) = ‖Ax+ b‖1 which we can write as f(x) = h∗(Ax+ b) where h is
the indicator function of the unit `∞ ball. Compute fµ(x) explicitly for d(y) = ‖y‖22/2, and

for d(y) =
∑

i 1−
√

1− y2i (check that both functions are 1-strongly convex).

8. (*) Consider the following optimization problem for denoising a one-dimensional signal b ∈ Rn:

min
x∈Rn

‖x− b‖22 + γ‖Dx‖1

where γ > 0, and D ∈ R(n−1)×n is the finite-difference operator Dx = [xi+1 − xi]1≤i≤n−1.
After introducing the new variable y = Dx, compute the Lagrangian and the dual problem,
and discuss algorithms to solve the dual problem as well as their convergence properties.
Compare with the subgradient method applied to the original problem. Extra: implement
the algorithms with b a piecewise constant signal corrupted by some Gaussian noise.
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