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1 Introduction

In this course we are interested in solving optimization problems:

min f(x) subject to x ∈ X

where f : Rn → R is the objective (or cost) function and X ⊆ Rn is the feasible set. A minimization
problem is convex if X is a convex set and f is a convex function.1

Optimization problems show up in many areas:

Applications of optimization

• Fitting/classification: Least squares: Given data points (x1, y1), . . . , (xn, yn) where xi ∈ Rp
and yi ∈ R we want to find w ∈ Rp and b ∈ R such that yi ≈ wTxi + b. A common way to
find such a w, b is to solve

min
w∈Rp,b∈R

n∑
i=1

(wTxi + b− yi)2. (1)

Having solved this optimization problem and obtained the optimal w, b, the predicted output
ȳ for a new data point x̄ is ȳ = wT x̄+ b. This is an unconstrained optimization problem. It
is convex. In fact, solving (1) has a ‘closed-form solution’, and amounts to solve a positive
definite system of linear equations.
Logistic loss: If yi ∈ {−1,+1} (classification problem), it is more common to use a logistic
loss rather than a least-squares loss. This leads to the optimization problem

min
w∈Rp,b∈R

n∑
i=1

log2

(
1 + e−yi(w

T xi+b)
)
. (2)

This is an unconstrained optimization problem, which is again convex (prove it). However, we
do not, in general have a closed form solution, and so we have to resort to iterative methods
to approach the solution of (2). Having solved this optimization problem and obtained the
optimal w, b, the predicted class ȳ for a new data point x̄ is ȳ = sign(wT x̄+ b).
Nonlinear classification: Now assume we have a family of functions F = {fw : w ∈ Rp}
indexed by some real vector w ∈ Rp. For example fw could be a neural network with weight
vector w. The training problem, with a logistic loss, then becomes

min
w∈Rp

n∑
i=1

log2

(
1 + e−yifw(x)

)
.

This is again an unconstrained problem, but in general it can be nonconvex problem (de-
pending on the parameterization w 7→ fw).

1It is important in the latter definition that we are dealing here with a minimization problem; maximizing a convex
function subject to convex constraints is not considered a convex problem.
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Remark 1. A motivation for the logistic loss can be explained as follows: we put a model
P (yi = +1) = ew

T xi+b/(1 + ew
T xi+b) and P (yi = −1) = 1/(1 + ew

T xi+b). The likelihood of a
set of observations {y1, . . . , yn} is∏

i:yi=1

ew
T xi+b

1 + ewT xi+b
·
∏

i:yi=−1

1

1 + ewT xi+b
.

So the log likelihood is ∑
i:yi=1

(wTxi + b)−
n∑
i=1

log(1 + ew
T xi+b) (3)

Note that (3) is equal to

−
n∑
i=1

log(1 + e−yi(w
T xi+b)) (4)

since for yi = 1 we get log(1 + e−yi(w
T xi+b)) = log(1 + e−(w

T xi+b)) = −(wTxi + b) + log(1 +

ew
T xi+b).

• Geometry: given a cloud of point x1, . . . , xn ∈ Rp, we want to find the ellipsoid E of minimum
volume that contains the points, i.e., we want to solve

min volume(E) s.t. xi ∈ E ∀i = 1, . . . , n.

Assuming (for simplicity) that the ellipsoid is centered at the origin, we can write E ={
z ∈ Rp : zTQ−1z ≤ 1

}
where Q is a p × p real symmetric matrix that is positive definite.

Then the volume of E is proportional to det(Q)1/2. Thus our problem can be written as

min det(Q) s.t.

{
Q is positive definite

xTi Q
−1xi ≤ 1.

(5)

This is a constrained optimization problem. As written, this problem is not convex, as
the function Q 7→ det(Q) is not convex. However (6) can be reformulated as a convex
optimization problem, using the following two observations: if we do the change of variables
P = Q−1, and consider minimizing log detQ (which is the same as minimizing detQ, since
log is monotonic), then log detQ = − log detP , and the latter is a convex function of P . Our
problem is equivalent to

min − log det(P ) s.t.

{
P is positive definite

xTi Pxi ≤ 1.
(6)

The objective function is convex in P , and the feasible set is convex (why?), thus this is a
convex optimization problem.

• Graph theory: given a graph G = (V,E) where E ⊂
(
V
2

)
, a stable set of G is a subset S of

vertices that are pairwise nonadjacent, i.e., i, j ∈ S ⇒ {i, j} /∈ E. The maximum stable set
problem asks for the largest stable set in a given graph G

max |S| s.t. S stable set.

Such a problem can be reformulated as a constrained optimization over Rn by considering
the characteristic vector x of S:

max
x∈Rn

n∑
i=1

xi s.t.

{
x2i = xi ∀i = 1, . . . , n

xixj = 0 ∀{i, j} ∈ E.
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Optimization on the cube To illustrate some of the concepts in this course consider the problem
of minimizing a function f : Rn → R on [0, 1]n, i.e., to compute:

f∗ = min
x∈[0,1]n

f(x).

Our goal will be to find a solution with accuracy ε > 0:

Find x̄ s.t. f(x̄)− f∗ ≤ ε. (*)

The algorithms have access to f through a black box which, given an input x ∈ [0, 1]n returns the
value f(x) ∈ R. This is called an zeroth-order oracle model2 The complexity of an algorithm on a
given function f is the number of queries it makes to the oracle. So a general algorithm has the
following form:

1. Query oracle at x0 ∈ [0, 1]n to get value f0 = f(x0)

2. Query oracle at x1 ∈ [0, 1]n (allowed to depend on f0) to get value f1 = f(x1)

3. Query oracle at x2 ∈ [0, 1]n (allowed to depend on f0, f1) to get value f2 = f(x2)

4. . . .

5. Query oracle at xN−1 ∈ [0, 1]n (allowed to depend on f0, . . . , fN−2) to get value fN−1 =
f(xN−1)

6. Output x̄ based on the gathered information about f

We will consider the class of functions that are L-Lipschitz with respect to `∞ norm

FL = {f : [0, 1]n → R s.t. |f(x)− f(y)| ≤ L‖x− y‖∞ ∀x, y ∈ [0, 1]n}

where ‖x‖∞ = maxi=1,...,n |xi|. We can prove the following:

Proposition 1.1. There is an algorithm that can return an ε-accurate minimizer (in the sense of
(*)) of any f ∈ FL with a number of queries ≤ (b L2εc+ 2)n.

Proof. Grid search. We discretize the cube [0, 1]n using grid points that are equispaced by 2ε/L in
each dimension. Let (xi)i=1,...,N be the grid points; there are N ≤ (b L2εc+ 2)n such grid points (we
include points at coordinate 0 and coordinate 1, hence the +2). Let x̄ be the grid point where the
value of f is smallest, i.e.,

x̄ = argmin
x∈{x1,...,xN}

f(x).

We claim that this algorithm achieves the desired accuracy. Indeed, let x∗ be a minimizer of f on
[0, 1]n, and let x̃ be the closest grid point to x∗ in the `∞ norm. Since the grid is equispaced by
2ε/L it is not difficult to see that ‖x∗ − x̃‖∞ ≤ ε/L. Then we have

f(x̄)− f∗ ≤ f(x̃)− f∗ ≤ L‖x̃− x∗‖∞ ≤ ε

as desired.

2A first-order oracle returns the gradient of f at x, and a second-order oracle returns the Hessian of f at x. We
will see this later...
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The algorithm produced in the previous proposition is not great. For functions of large number
of variables n the algorithm is not at all practical. Can we do better? The answer turns out to be
no, if we want our algorithm to work for all f ∈ FL.

Proposition 1.2. Assume A is an algorithm that returns an ε-accurate minimizer for all f ∈ FL.
Then there is at least one function f ∈ FL on which A does at least ≥ (b L3εc)

n − 1 queries.

Proof. Recall that an algorithm A is given by a sequence of query points x0, x1, . . . where each query
point is allowed to depend on the answer received on the previous ones. We are going to simulate
the algorithm on the function f(x) ≡ 0 (the function equal to zero everywhere). On such a function
the algorithm will query certain (fixed) points x0, x1, x2, . . . , xN−1 all in [0, 1]n before producing
a point x̄ ∈ [0, 1]n. Let S = {x0, . . . , xN−1, x̄}. We claim that necessarily |S| ≥ (bL/(3ε)c)n. Fix
η = 3ε/L and consider dividing [0, 1]n into small boxes each of size η. We have at least b1/ηcn
disjoint such boxes. Assuming for contradiction that |S| < (b1/ηc)n, by the pigeonhole principle,
there exists at least one box which does not contain any point from S. Let x∗ be the center of that
box and define the function

f(x) = min(0, L‖x− x∗‖∞ − ηL/2).

Note that f ∈ FL, it is zero outside the box centered at x∗ and its minimum is −ηL/2 = −3ε/2.
If we run the algorithm on this function f we will get the same output as for the function that
is identically zero (the x̄ ∈ S from above). But this x̄ is outside the box centered at x∗ and so
f(x̄) = 0. This contradicts the assumption that the algorithm achieves ε accuracy on all functions
in FL because f(x̄)− f∗ = 3ε/2 > ε. Thus it must be that |S| ≥ b1/ηcn = (b L3εc)

n.

We have thus shown that the following min-max quantity

min
Algorithms A that achieve
(*) for all functions in FL

max
f∈FL

Complexity of A on f

lies between ( L3ε)
n and ( L2ε + 2)n.

4


	Introduction

