
Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

10 Proximal methods

We consider a general class of optimization problems where the objective function F (x) “splits”
into two parts F (x) = f(x) + h(x) where f(x) is convex, smooth and L-Lipschitz, and h(x) is
convex nonsmooth but “simple” (in a way that will be clear later). So we want to solve

min
x∈Rn

F (x) = f(x) + h(x). (1)

Examples:

• Clearly if h = IC is the indicator function of a convex set C then problem (1) is equivalent
to minimizing f(x) on C.

• Optimization problems of the form (1) are very common in statistics where f(x) is a “data
fidelity” term (e.g., f(x) = ‖Ax − b‖22 for a linear model with a squared loss) and h(x) is a
“regularization” term (e.g., h(x) = ‖x‖1 to promote sparsity).

Proximal gradient method The proximal gradient method to solve (1) proceeds as follows.
Starting from any x0 ∈ Rn, iterate:

xk+1 = proxtkh (xk − tk∇f(xk)) (2)

where tk > 0 are the step sizes. Recall that

proxh(y) = argmin
x∈Rn

{
h(x) +

1

2
‖x− y‖22

}
and that

x = proxh(y) ⇐⇒ 0 ∈ ∂h(x) + (x− y). (3)

Remarks:

• When h is the indicator function of convex set C, then iterates (2) correspond to projected
gradient descent.

• If x∗ is a fixed point of (2), i.e., x∗ = proxth(x∗− t∇f(x∗)), then this means by (3) that x∗−
t∇f(x∗)−x∗ ∈ t∂h(x∗), i.e., 0 ∈ ∇f(x∗)+∂h(x∗). Assuming int dom f ∩ int domh 6= ∅, this
is equivalent to 0 ∈ ∂(f + h)(x∗) which implies that x∗ is a minimizer of F (x) = f(x) + h(x),
as desired.

• From (3) we know that xk+1 = proxtkh(xk − tk∇f(xk)) should satisfy

xk+1 = xk − tk∇f(xk)− tkh′(xk+1) (4)

for some h′(xk+1) ∈ ∂h(xk+1). The main difference with a standard (sub)gradient method
applied to f+h is that we have h′(xk+1) on the right-hand side, and not h′(xk). [cf. backward
Euler vs. forward Euler for the discretization of ODEs. In fact, the proximal gradient method
is also known as the forward-backward method.]
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• Using the definition of prox, we see that the iterate (2) can be written as

xk+1 = argmin
x∈Rn

{
h(x) +

1

2tk
‖x− (xk − tk∇f(xk))‖22

}
= argmin

x∈Rn

{
f(xk) + 〈∇f(xk), x− xk〉+ h(x) +

1

2tk
‖x− xk‖22

}
The term f(xk) + 〈∇f(xk), x− xk〉+h(x) is a local approximation of the cost function f +h
around xk. The term 1

2tk
‖x−xk‖22 ensures that we only trust this approximation close to xk.

The convergence proof of the proximal gradient method is very similar to gradient method. We
consider the two cases where f is m-strongly convex and L-smooth, and the case where f is simply
L-smooth.
• When f is strongly convex, we can prove the following.

Theorem 10.1. Let F = f+h and assume f : Rn → R is m-strongly convex and L-smooth, and h is
convex. For constant step size tk = 2/(m+L) the iterations of (2) ‖xk−x∗‖2 ≤ (L−mL+m)k‖x0−x∗‖2.

Proof. We assume here that f is twice differentiable, and that mI � ∇2f(x) � LI. We have, using
the fact that x∗ is a fixed point of the iteration map (see second remark above)

‖x+ − x∗‖2 = ‖proxth(x− t∇f(x))− proxth(x∗ − t∇f(x∗))‖2
≤ ‖x− x∗ − t(∇f(x)−∇f(x∗))‖2

where in the second line we used the fact that the proximal operator is nonexpansive. Now we have

∇f(x)−∇f(x∗) =

∫ 1

0
∇2f(x∗ + α(x− x∗))(x− x∗)dα = M(x− x∗)

where M =
∫ 1
0 ∇

2f(x∗+α(x−x∗))dα is a symmetric matrix whose eigenvalues all lie in [m,L]. Thus
we get ‖x+−x∗‖2 ≤ ‖(I−tM)(x−x∗)‖2 ≤ ‖I−tM‖‖x−x∗‖2 where ‖I−tM‖ is the operator norm
of I−tM . When t = 2/(m+L) we have already seen in Lecture 3 that ‖I−tM‖ ≤ (L−m)/(L+m).

This shows that ‖xk − x∗‖2 ≤
(
L−m
L+m

)k
‖x0 − x∗‖2.

• We now sketch the proof, in the case where f is just L-smooth.

Theorem 10.2. Let F = f + h, and assume f : Rn → R is convex L-smooth (i.e., ∇f is L-
Lipschitz) and h is convex. For constant step size tk = t ∈ (0, 1/L] the iterations of (2) satisfy
F (xk)− F ∗ ≤ 1

2kt‖x0 − x
∗‖22.

Proof. We start in the same way as the standard gradient method

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+
L

2
‖x+ − x‖22.

From (4) we know that we can write x+ = x − t∇f(x) − th′(x+) where h′(x+) ∈ ∂h(x+). Thus
plugging ∇f(x) = 1

t (x− x
+)− h′(x+) we get

f(x+) ≤ f(x)− 1

t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
+
L

2
‖x+ − x‖22

≤ f(x)− 1

t
‖x− x+‖22(1− Lt/2) +

〈
h′(x+), x− x+

〉
= f(x)− 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
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where in the last line we used t = 1/L. Now we substract f(x∗) from each side to get

f(x+)− f(x∗) ≤ f(x)− f(x∗)− 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
≤ 〈∇f(x), x− x∗〉 − 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
=

〈
x− x+

t
− h′(x+), x− x∗

〉
− 1

2t
‖x− x+‖22 +

〈
h′(x+), x− x+

〉
(a)
=

1

2t
[‖x− x∗‖22 − ‖x+ − x∗‖22] +

〈
h′(x+), x∗ − x+

〉
(b)

≤ 1

2t
[‖x− x∗‖22 − ‖x+ − x∗‖22] + h(x∗)− h(x+)

where in (a) we used completion of squares, and in (b) we used convexity of h. The last inequality
tells us that

F (x+)− F (x∗) ≤ 1

2t
[‖x− x∗‖22 − ‖x+ − x∗‖22].

The rest of the proof is straightforward.

Fast proximal gradient method There is a fast version of the proximal gradient method that
converges in O(1/k2). The algorithm takes the form:{

y = xk + βk(xk − xk−1)
xk+1 = proxtkh (y − tk∇f(y)) .

(5)

One can adapt the proof of the fast gradient method to show that (5) (with e.g., βk = (k−1)/(k+2))
has a convergence rate of O(1/k2).

Regression with `1 regularization (Lasso, compressed sensing, ...) Consider the problem

min
x∈Rn

‖Ax− b‖22 + λ‖x‖1. (6)

where A ∈ Rm×n and b ∈ Rm. The ‖x‖1 term in the objective promotes sparsity in the solution x∗.
Problem (6) fits (1) with f(x) = ‖Ax− b‖22 and h(x) = λ‖x‖1. We saw that the proximal operator
of h is the soft-thresholding operator. The proximal gradient method applied to (6) is called the
iterative shrinkage thresholding algorithm (ISTA) and takes the form

xk+1 = Sλt(xk − 2tAT (Axk − b))

where Sλt is the soft-thresholding operator as seen in Lecture 9, with parameter λt. The fast version
is known as FISTA [BT09].
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