Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

10 Proximal methods

We consider a general class of optimization problems where the objective function F'(x) “splits”
into two parts F(z) = f(x) + h(x) where f(z) is convex, smooth and L-Lipschitz, and h(z) is
convex nonsmooth but “simple” (in a way that will be clear later). So we want to solve

min F(z) = f(z) + h(a). (1)

Examples:

e Clearly if h = I¢ is the indicator function of a convex set C' then problem (1) is equivalent
to minimizing f(z) on C.

e Optimization problems of the form (1) are very common in statistics where f(z) is a “data
fidelity” term (e.g., f(z) = ||Az — b||3 for a linear model with a squared loss) and h(z) is a
“regularization” term (e.g., h(z) = ||z||; to promote sparsity).

Proximal gradient method The proximal gradient method to solve (1) proceeds as follows.
Starting from any xg € R™, iterate:

The1 = Proxy, p, (zx — iV f(zr)) (2)
where t; > 0 are the step sizes. Recall that
. 1 2
prox; (y) = argmin { A(z) + ol — I3
rER™

and that
x = prox,(y) <= 0€ dh(z)+ (z —vy). (3)

Remarks:

e When h is the indicator function of convex set C, then iterates (2) correspond to projected
gradient descent.

e If z* is a fixed point of (2), i.e., z* = prox,, (z* —tV f(z*)), then this means by (3) that z* —
tV f(z*)—a* € toh(x*), i.e., 0 € Vf(x*)+0h(z*). Assuming int dom fNint dom h # (), this
is equivalent to 0 € O(f + h)(z*) which implies that z* is a minimizer of F(z) = f(z) + h(z),
as desired.

e From (3) we know that x31 = prox,; ,(zy — t,V f(zx)) should satisfy

Tpp1 = 2 — 4V f(x) — teh/ (Tp41) (4)

for some h'(xg41) € Oh(xk41). The main difference with a standard (sub)gradient method
applied to f+h is that we have h/(x11) on the right-hand side, and not h’(xy). [cf. backward
Euler vs. forward Euler for the discretization of ODEs. In fact, the proximal gradient method
is also known as the forward-backward method.]



e Using the definition of prox, we see that the iterate (2) can be written as

P = argmin {h + e — (e - tkwm))uQ}
xeR™

] 1
= argmin {f + (Vf(xg),x — xp) + h(z) + 5”1’ - xk”%}
reR” k

The term f(xg)+ (Vf(zk),r — zx) + h(x) is a local approximation of the cost function f+ h
around zj. The term in — xx||3 ensures that we only trust this approximation close to xy.

The convergence proof of the proximal gradient method is very similar to gradient method. We
consider the two cases where f is m-strongly convex and L-smooth, and the case where f is simply
L-smooth.

e When f is strongly convex, we can prove the following.

Theorem 10.1. Let F = f+h and assume f : R™ — R is m-strongly convex and L-smooth, and h is
convex. For constant step size t, = 2/(m+ L) the iterations of (2) ||z —a*||2 < (L+m) |lxo —z*||2.

Proof. We assume here that f is twice differentiable, and that mI < V2f(x) < LI. We have, using
the fact that z* is a fixed point of the iteration map (see second remark above)

[ — 2™}z = || proxy, (z — tV f(2)) — proxy, (z* — tV f(z*))|2
< |lo —a* — t(Vf(x) — V(@)

where in the second line we used the fact that the proximal operator is nonexpansive. Now we have
Vf(x)—Vf(z / V2if(z* 4 oz — 2%))(x — 2*)da = M(x — x*)

where M = fol V2f(z*+a(z—1z*))da is a symmetric matrix whose eigenvalues all lie in [m, L]. Thus
we get ||zt —a*|lo < [[(I—tM)(z—a*)||2 < ||[I—tM||||x —x*||2 where ||[I —tM]| is the operator norm
of I—tM. When t = 2/(m+ L) we have already seen in Lecture 3 that || —tM|| < (L—m)/(L+m).

k
This shows that ||z — z*||2 < (L+m> |lxo — z*|2. O
e We now sketch the proof, in the case where f is just L-smooth.

Theorem 10.2. Let F = f 4+ h, and assume f : R" — R is convexr L-smooth (i.e., Vf is L-
Lipschitz) and h is convex. For constant step size t, =t € (0,1/L] the iterations of (2) satisfy
F(zr) = F* < g llwo — 2*|3.

Proof. We start in the same way as the standard gradient method
L
F@®) < f@) +(VI(@),a" —x) + " = /3.

From (4) we know that we can write z* = x — tV f(z) — th/ (") where I/(z) € Oh(z™). Thus
plugging Vf(z) = 1(z —2T) — W (z) we get

L
fl@®) < flz) - %II:E — a3+ (W), —aT) + Sllat -l

< $(@) = Sz = I3 — Lt/2) + (K (), 2 — a¥)

= (&) — gl — 2t B+ (W), — o)



where in the last line we used ¢t = 1/L. Now we substract f(z*) from each side to get

f@®) = fa*) < fla) = f(z*) - %Ilfv — a3+ (W' (@T), 2z —2™)

< (Vi@)w—a%) - o lle —a B+ (W), 2 - o)
—(T5E W e ) - e — a4 (K e - o)
Dl =3 - ot - oI+ (W), - )

< delle =l 7 — "]+ h(e) — Aa)

where in (a) we used completion of squares, and in (b) we used convexity of h. The last inequality
tells us that

F(zt) = F(a*) < e = 2"l = «* = 27[3].

| =

The rest of the proof is straightforward. O

Fast proximal gradient method There is a fast version of the proximal gradient method that
converges in O(1/k?). The algorithm takes the form:

Tr+1 = ProxXy,, (y — eV f(y)) -

One can adapt the proof of the fast gradient method to show that (5) (with e.g., B = (k—1)/(k+2))
has a convergence rate of O(1/k?).

Regression with ¢; regularization (Lasso, compressed sensing, ...) Consider the problem

min ||Az — b||3 + \||z||:. (6)
reR™

where A € R™*™ and b € R™. The ||z||; term in the objective promotes sparsity in the solution z*.
Problem (6) fits (1) with f(z) = ||Az — b||3 and h(x) = A||z||;. We saw that the proximal operator
of h is the soft-thresholding operator. The proximal gradient method applied to (6) is called the
iterative shrinkage thresholding algorithm (ISTA) and takes the form

Th+1 = S)\t(xk — QtAT(A.Z'k — b))

where S); is the soft-thresholding operator as seen in Lecture 9, with parameter A\t. The fast version
is known as FISTA [BT09].
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