10 Proximal methods

We consider a general class of optimization problems where the objective function $F(x)$ "splits" into two parts $F(x)=f(x)+h(x)$ where $f(x)$ is convex, smooth and L-Lipschitz, and $h(x)$ is convex nonsmooth but "simple" (in a way that will be clear later). So we want to solve

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} F(x)=f(x)+h(x) \tag{1}
\end{equation*}
$$

Examples:

- Clearly if $h=I_{C}$ is the indicator function of a convex set C then problem (1) is equivalent to minimizing $f(x)$ on C.
- Optimization problems of the form (1) are very common in statistics where $f(x)$ is a "data fidelity" term (e.g., $f(x)=\|A x-b\|_{2}^{2}$ for a linear model with a squared loss) and $h(x)$ is a "regularization" term (e.g., $h(x)=\|x\|_{1}$ to promote sparsity).

Proximal gradient method The proximal gradient method to solve (1) proceeds as follows. Starting from any $x_{0} \in \mathbb{R}^{n}$, iterate:

$$
\begin{equation*}
x_{k+1}=\operatorname{prox}_{t_{k} h}\left(x_{k}-t_{k} \nabla f\left(x_{k}\right)\right) \tag{2}
\end{equation*}
$$

where $t_{k}>0$ are the step sizes. Recall that

$$
\operatorname{prox}_{h}(y)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{h(x)+\frac{1}{2}\|x-y\|_{2}^{2}\right\}
$$

and that

$$
\begin{equation*}
x=\operatorname{prox}_{h}(y) \Longleftrightarrow 0 \in \partial h(x)+(x-y) . \tag{3}
\end{equation*}
$$

Remarks:

- When h is the indicator function of convex set C, then iterates (2) correspond to projected gradient descent.
- If x^{*} is a fixed point of (2), i.e., $x^{*}=\operatorname{prox}_{t h}\left(x^{*}-t \nabla f\left(x^{*}\right)\right)$, then this means by (3) that $x^{*}-$ $t \nabla f\left(x^{*}\right)-x^{*} \in t \partial h\left(x^{*}\right)$, i.e., $0 \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right)$. Assuming int dom $f \cap \operatorname{int} \operatorname{dom} h \neq \emptyset$, this is equivalent to $0 \in \partial(f+h)\left(x^{*}\right)$ which implies that x^{*} is a minimizer of $F(x)=f(x)+h(x)$, as desired.
- From (3) we know that $x_{k+1}=\operatorname{prox}_{t_{k} h}\left(x_{k}-t_{k} \nabla f\left(x_{k}\right)\right)$ should satisfy

$$
\begin{equation*}
x_{k+1}=x_{k}-t_{k} \nabla f\left(x_{k}\right)-t_{k} h^{\prime}\left(x_{k+1}\right) \tag{4}
\end{equation*}
$$

for some $h^{\prime}\left(x_{k+1}\right) \in \partial h\left(x_{k+1}\right)$. The main difference with a standard (sub)gradient method applied to $f+h$ is that we have $h^{\prime}\left(x_{k+1}\right)$ on the right-hand side, and not $h^{\prime}\left(x_{k}\right)$. [cf. backward Euler vs. forward Euler for the discretization of ODEs. In fact, the proximal gradient method is also known as the forward-backward method.]

- Using the definition of prox, we see that the iterate (2) can be written as

$$
\begin{aligned}
x_{k+1} & =\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{h(x)+\frac{1}{2 t_{k}}\left\|x-\left(x_{k}-t_{k} \nabla f\left(x_{k}\right)\right)\right\|_{2}^{2}\right\} \\
& =\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+h(x)+\frac{1}{2 t_{k}}\left\|x-x_{k}\right\|_{2}^{2}\right\}
\end{aligned}
$$

The term $f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+h(x)$ is a local approximation of the cost function $f+h$ around x_{k}. The term $\frac{1}{2 t_{k}}\left\|x-x_{k}\right\|_{2}^{2}$ ensures that we only trust this approximation close to x_{k}.
The convergence proof of the proximal gradient method is very similar to gradient method. We consider the two cases where f is m-strongly convex and L-smooth, and the case where f is simply L-smooth.

- When f is strongly convex, we can prove the following.

Theorem 10.1. Let $F=f+h$ and assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is m-strongly convex and L-smooth, and h is convex. For constant step size $t_{k}=2 /(m+L)$ the iterations of (2) $\left\|x_{k}-x^{*}\right\|_{2} \leq\left(\frac{L-m}{L+m}\right)^{k}\left\|x_{0}-x^{*}\right\|_{2}$.
Proof. We assume here that f is twice differentiable, and that $m I \preceq \nabla^{2} f(x) \preceq L I$. We have, using the fact that x^{*} is a fixed point of the iteration map (see second remark above)

$$
\begin{aligned}
\left\|x^{+}-x^{*}\right\|_{2} & =\left\|\operatorname{prox}_{t h}(x-t \nabla f(x))-\operatorname{prox}_{t h}\left(x^{*}-t \nabla f\left(x^{*}\right)\right)\right\|_{2} \\
& \leq\left\|x-x^{*}-t\left(\nabla f(x)-\nabla f\left(x^{*}\right)\right)\right\|_{2}
\end{aligned}
$$

where in the second line we used the fact that the proximal operator is nonexpansive. Now we have

$$
\nabla f(x)-\nabla f\left(x^{*}\right)=\int_{0}^{1} \nabla^{2} f\left(x^{*}+\alpha\left(x-x^{*}\right)\right)\left(x-x^{*}\right) d \alpha=M\left(x-x^{*}\right)
$$

where $M=\int_{0}^{1} \nabla^{2} f\left(x^{*}+\alpha\left(x-x^{*}\right)\right) d \alpha$ is a symmetric matrix whose eigenvalues all lie in $[m, L]$. Thus we get $\left\|x^{+}-x^{*}\right\|_{2} \leq\left\|(I-t M)\left(x-x^{*}\right)\right\|_{2} \leq\|I-t M\|\left\|x-x^{*}\right\|_{2}$ where $\|I-t M\|$ is the operator norm of $I-t M$. When $t=2 /(m+L)$ we have already seen in Lecture 3 that $\|I-t M\| \leq(L-m) /(L+m)$. This shows that $\left\|x_{k}-x^{*}\right\|_{2} \leq\left(\frac{L-m}{L+m}\right)^{k}\left\|x_{0}-x^{*}\right\|_{2}$.

- We now sketch the proof, in the case where f is just L-smooth.

Theorem 10.2. Let $F=f+h$, and assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex L-smooth (i.e., ∇f is L Lipschitz) and h is convex. For constant step size $t_{k}=t \in(0,1 / L]$ the iterations of (2) satisfy $F\left(x_{k}\right)-F^{*} \leq \frac{1}{2 k t}\left\|x_{0}-x^{*}\right\|_{2}^{2}$.
Proof. We start in the same way as the standard gradient method

$$
f\left(x^{+}\right) \leq f(x)+\left\langle\nabla f(x), x^{+}-x\right\rangle+\frac{L}{2}\left\|x^{+}-x\right\|_{2}^{2} .
$$

From (4) we know that we can write $x^{+}=x-t \nabla f(x)-t h^{\prime}\left(x^{+}\right)$where $h^{\prime}\left(x^{+}\right) \in \partial h\left(x^{+}\right)$. Thus plugging $\nabla f(x)=\frac{1}{t}\left(x-x^{+}\right)-h^{\prime}\left(x^{+}\right)$we get

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f(x)-\frac{1}{t}\left\|x-x^{+}\right\|_{2}^{2}+\left\langle h^{\prime}\left(x^{+}\right), x-x^{+}\right\rangle+\frac{L}{2}\left\|x^{+}-x\right\|_{2}^{2} \\
& \leq f(x)-\frac{1}{t}\left\|x-x^{+}\right\|_{2}^{2}(1-L t / 2)+\left\langle h^{\prime}\left(x^{+}\right), x-x^{+}\right\rangle \\
& =f(x)-\frac{1}{2 t}\left\|x-x^{+}\right\|_{2}^{2}+\left\langle h^{\prime}\left(x^{+}\right), x-x^{+}\right\rangle
\end{aligned}
$$

where in the last line we used $t=1 / L$. Now we substract $f\left(x^{*}\right)$ from each side to get

$$
\begin{aligned}
f\left(x^{+}\right)-f\left(x^{*}\right) & \leq f(x)-f\left(x^{*}\right)-\frac{1}{2 t}\left\|x-x^{+}\right\|_{2}^{2}+\left\langle h^{\prime}\left(x^{+}\right), x-x^{+}\right\rangle \\
& \leq\left\langle\nabla f(x), x-x^{*}\right\rangle-\frac{1}{2 t}\left\|x-x^{+}\right\|_{2}^{2}+\left\langle h^{\prime}\left(x^{+}\right), x-x^{+}\right\rangle \\
& =\left\langle\frac{x-x^{+}}{t}-h^{\prime}\left(x^{+}\right), x-x^{*}\right\rangle-\frac{1}{2 t}\left\|x-x^{+}\right\|_{2}^{2}+\left\langle h^{\prime}\left(x^{+}\right), x-x^{+}\right\rangle \\
& \stackrel{(a)}{=} \frac{1}{2 t}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{+}-x^{*}\right\|_{2}^{2}\right]+\left\langle h^{\prime}\left(x^{+}\right), x^{*}-x^{+}\right\rangle \\
& \stackrel{(b)}{\leq} \frac{1}{2 t}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{+}-x^{*}\right\|_{2}^{2}\right]+h\left(x^{*}\right)-h\left(x^{+}\right)
\end{aligned}
$$

where in (a) we used completion of squares, and in (b) we used convexity of h. The last inequality tells us that

$$
F\left(x^{+}\right)-F\left(x^{*}\right) \leq \frac{1}{2 t}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{+}-x^{*}\right\|_{2}^{2}\right] .
$$

The rest of the proof is straightforward.
Fast proximal gradient method There is a fast version of the proximal gradient method that converges in $O\left(1 / k^{2}\right)$. The algorithm takes the form:

$$
\left\{\begin{array}{l}
y=x_{k}+\beta_{k}\left(x_{k}-x_{k-1}\right) \tag{5}\\
x_{k+1}=\operatorname{prox}_{t_{k} h}\left(y-t_{k} \nabla f(y)\right) .
\end{array}\right.
$$

One can adapt the proof of the fast gradient method to show that (5) (with e.g., $\beta_{k}=(k-1) /(k+2)$) has a convergence rate of $O\left(1 / k^{2}\right)$.

Regression with ℓ_{1} regularization (Lasso, compressed sensing, ...) Consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} . \tag{6}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. The $\|x\|_{1}$ term in the objective promotes sparsity in the solution x^{*}. Problem (6) fits (1) with $f(x)=\|A x-b\|_{2}^{2}$ and $h(x)=\lambda\|x\|_{1}$. We saw that the proximal operator of h is the soft-thresholding operator. The proximal gradient method applied to (6) is called the iterative shrinkage thresholding algorithm (ISTA) and takes the form

$$
x_{k+1}=S_{\lambda t}\left(x_{k}-2 t A^{T}\left(A x_{k}-b\right)\right)
$$

where $S_{\lambda t}$ is the soft-thresholding operator as seen in Lecture 9 , with parameter λt. The fast version is known as FISTA [BT09].

References

[BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202, 2009. 3
[PB14] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends® in Optimization, 1(3):127-239, 2014.

