
Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

11 Bregman gradient methods

All the methods and convergence rates we have seen so far depend on the Euclidean structure
we put on Rn. For example, the smoothness and strong convexity assumptions we used are with
respect to the Euclidean norm, and the obtained rates all involve a term of the form ‖x0 − x∗‖2.
In this lecture we will see that most of the results we have derived can be extended to work with
so-called Bregman divergences.

11.1 Bregman divergence

Let φ : Rn → R be a strictly convex1 differentiable function, which is also lower semicontinuous2.
The Bregman divergence associated to φ is the function:

Dφ(x|y) = φ(x)− [φ(y) + 〈∇φ(y), x− y〉]

defined for all (x, y) ∈ domφ × int domφ. Convexity of φ tells us that Dφ(x|y) ≥ 0 for all x, y;
and strict convexity tells us that Dφ(x|y) = 0 =⇒ x = y.
Examples:

• If φ(x) = ‖x‖22/2, then Dφ(x|y) = ‖x‖22/2 − ‖y‖22/2 − 〈y, x− y〉 = ‖x − y‖22/2 is the usual
squared Euclidean norm.

• If φ(x) =
∑n

i=1 xi log xi defined on Rn+, then

Dφ(x|y) =
n∑
i=1

xi log(xi/yi) + yi − xi

is the so-called Kullback-Leibler (KL) divergence, defined for all x ≥ 0 and y > 0.

Figure 1: Contour plots of ‖x−p‖22/2 vs. DKL(x|p), where p = (1/3, 1/3, 1/3), on the unit simplex
{x ∈ R3 : x ≥ 0 and x1 + x2 + x3 = 1}.

1A strictly convex function is one that satisfies φ(λx+ (1− λ)y) < λφ(x) + (1− λ)φ(y) for all x, y and λ ∈ (0, 1).
2Recall that φ is lower semicontinuous iff all its sublevel sets are closed.
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EXERCISE: Show, using strict convexity of φ, that the balls {x ∈ dom(φ) : Dφ(x|y) ≤ r} for
any y ∈ int domφ and any r ≥ 0 are all bounded. [Hint: you can use the fact that if C is an
unbounded closed convex set, then there is a direction v such that x + tv ∈ C for all x ∈ C and
t ≥ 0.]

We will need the following identity, which is straightforward to verify. This identity gener-
alizes the following “completion of squares” identity, which we have used repeatedly in previous
convergence proofs:

‖c− b‖22 − 2 〈c− b, a− b〉 = ‖c− a‖22 − ‖b− a‖22.

Proposition 11.1. For any a, b, c we have

Dφ(c|b)− 〈∇φ(a)−∇φ(b), c− b〉 = Dφ(c|a)−Dφ(b|a). (1)

The following figure gives a simple graphical intepretation of this equality.

a b c

Dφ(b|a)

Dφ(c|a)

Dφ(c|b)

φ′(b)(c− b)

Figure 2: Illustration of the equality (1) for a univariate function φ, where φ′(a) = 0.

When c = a the identity (1) tells us that

〈∇φ(a)−∇φ(b), a− b〉 = Dφ(a|b) +Dφ(b|a). (2)

11.2 Bregman gradient method

Consider the problem of minimizing f(x) over x ∈ Rn, where f : Rn → R is convex and differen-
tiable. We have seen that the iterates of the gradient method can be expressed in the following
way:

xk+1 = xk − tk∇f(xk) = argmin
x∈Rn

{
f(xk) + 〈∇f(xk), x− xk〉+

1

2tk
‖x− xk‖22

}
.

The Bregman gradient method (a.k.a. mirror descent) corresponds to replacing the term ‖x−
xk‖22/2 by a general Bregman divergence generated by φ, i.e., it takes the form

xk+1 = argmin
x∈Rn

{
f(xk) + 〈∇f(xk), x− xk〉+

1

tk
Dφ(x|xk)

}
. (3)

Remarks:
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• The optimality condition for the minimization expression above tells us that we must have

∇f(xk) = − 1

tk
(∇φ(xk+1)−∇φ(xk)). (4)

Compare this with the identity ∇f(xk) = −1
t (xk+1−xk) we used when analyzing the gradient

method.

• Equation (4) can also be rewritten as

xk+1 = (∇φ)−1(∇φ(xk)− tk∇f(xk)). (5)

The function ∇φ maps vectors in Rn to vectors in the dual space. The operation ∇φ(xk) −
tk∇f(xk) is carried out in the dual space of Rn, and the operation (∇φ)−1 is used to map the
iterates back to the primal space Rn. In the form (5), these iterations are known as mirror
descent method.

Example 1. Consider the problem of minimizing f(x) on Rn+. If we choose Dφ = DKL the KL-
divergence, then the iterates are defined by xk+1 = argminx≥0{tk 〈∇f(xk), x− xk〉 + DKL(x|xk)}
which can be shown to be equal to

xk+1 = xk • exp(−tk∇f(xk))

where • denotes componentwise multiplication, and exp here is the componentwise exponential func-
tion. This iteration is known as exponentiated gradient descent.

The analysis of the gradient method can be adapted to the case of the Bregman gradient method
provided we use the following assumptions on f .

Definition 11.1 (Relative smoothness, and relative strong convexity). Let φ : Rn → R be a strictly
convex function. We say that a function f : Rn → R is L-smooth relative to φ if Lφ− f is convex.
We say that f is m-strongly convex relative to φ if f −mφ is convex.

Remark 1. When φ(x) = ‖x‖22/2, then we recover the notions of L-smoothness and m-strong
convexity with respect to the Euclidean norm.

Equipped with the definitions above, we can prove the following.

Theorem 11.1. If f is convex and L-smooth relative to φ, then the iterates of the Bregman gradient
method (3) with constant step size tk = t ∈ (0, 1/L] satisfy for all k ≥ 1.

f(xk)− f∗ ≤
1

kt
Dφ(x∗|x0). (6)

If, in addition, f is m-strongly relative to φ, then we have for all k ≥ 1

Dφ(x∗|xk) ≤ (1−mt)kDφ(x∗|x0). (7)

Proof. We start by proving (6). The proof follows the same line as the proofs we have seen before.
The assumption that Lφ− f is convex tells us that DLφ−f ≥ 0, which corresponds to

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ LDφ(xk+1|xk). (8)
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(Compare with the descent lemma.) We substract f(u) from each side of (8) and use convexity of
f to get

f(xk+1)− f(u) ≤ f(xk)− f(u) + 〈∇f(xk), xk+1 − xk〉+ LDφ(xk+1|xk)
≤ 〈∇f(xk), xk − u〉+ 〈∇f(xk), xk+1 − xk〉+ LDφ(xk+1|xk)
= 〈∇f(xk), xk+1 − u〉+ LDφ(xk+1|xk).

(9)

Using the expression (4) for ∇f(xk) we get

f(xk+1)− f(u) ≤ −(1/t) 〈∇φ(xk+1)−∇φ(xk), xk+1 − u〉+ LDφ(xk+1|xk). (10)

The three-point identity (1) with a = xk, b = xk+1, c = u tells us that

〈∇φ(xk+1)−∇φ(xk), xk+1 − u〉 = Dφ(u|xk+1)−Dφ(u|xk) +Dφ(xk+1|xk).

Plugging this in (10) and using the fact that t ≤ 1/L we get

f(xk+1)− f(u) ≤ (−1/t)(Dφ(u|xk+1)−Dφ(u|xk)). (11)

Taking u = xk tells us that we are dealing with a descent method, i.e., f(xk+1) ≤ f(xk). Taking
u = x∗, and summing the inequalities from k = 0 to k = K − 1 gives us

K(f(xK)− f(x∗)) ≤
K−1∑
k=0

f(xk+1)− f(x∗) ≤ (−1/t)(Dφ(x∗|xK)−Dφ(x∗|x0)) ≤ 1

t
Dφ(x∗|x0).

Dividing by K gives us the desired inequality (6).
The proof of (7) is very similar. The difference is that in (9), we write the equality f(xk)−f(u) =

〈∇f(xk), x− u〉 −Df (u|xk), and then, since f −mφ is convex, we have Df−mφ = Df −mDφ ≥ 0,
and so we can write Df (u|xk) ≥ mDφ(u|xk). The inequality (11) then becomes

f(xk+1)− f(u) ≤ (−1/t)(Dφ(u|xk+1)−Dφ(u|xk))−mDφ(u|xk)
= −(1/t)Dφ(u|xk+1) + (1/t−m)Dφ(u|xk).

Taking u = x∗, and using the fact that 0 ≤ f(xk+1)− f(x∗), we get

Dφ(x∗|xk+1) ≤ (1−mt)Dφ(x∗|xk)

as desired.

Remark 2. The assumption Lφ−f convex was introduced in [BBT17] as the Lipschitz-like/Convexity
condition, also known as relative smoothness in [LFN18].
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[BBT17] Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond Lipschitz gradient conti-
nuity: first-order methods revisited and applications. Mathematics of Operations Research, 42(2):330–348,
2017. 4

[LFN18] Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018. 4

[Teb18] Marc Teboulle. A simplified view of first order methods for optimization. Mathematical Programming,
170(1):67–96, 2018.

4


	Bregman gradient methods
	Bregman divergence
	Bregman gradient method


