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12 Duality

12.1 Conjugate function

Definition 12.1 (Conjugate function). The Fenchel conjugate of a function f : Rn → R is defined
as

f∗(y) = sup
x∈Rn
{〈y, x〉 − f(x)}.

Observe that f∗ is always convex and l.s.c. (i.e., epi(f∗) is closed) since it is a supremum of
linear functions.

Note that for any y, we have a lower bound on f , namely 〈y, x〉 − f∗(y) ≤ f(x). Taking the
supremum over y tells us that f∗∗(x) ≤ f(x). The next theorem tells us that we actually have
equality when f is convex and lower semi-continuous.

Theorem 12.1 (Biduality). If f : Rn → R is convex and l.s.c. then f∗∗ = f .

Sketch of proof. We will show that epi(f) = epi(f∗∗). The inclusion ⊆ already follows from f∗∗ ≤
f . To prove the reverse inclusion assume (x̄, t̄) /∈ epi(f). We will show that (x̄, t̄) /∈ epi(f∗∗). Since
epi(f) is convex and closed (since f is l.s.c.), the separating hyperplane theorem tells us there is
(a, b) ∈ Rn × R \ {0} such that{

〈a, x̄〉 − bt̄ ≥ c+ δ > c

〈a, x〉 − bt ≤ c− δ < c ∀(x, t) ∈ epi(f).
(1)

Letting t→ +∞ in the second line above tells us that b ≥ 0.
We can further assume that b 6= 0 by perturbing the hyperplane slightly: indeed, assuming

b = 0, let x0 be any point where f has a subgradient g ∈ ∂f(x0). Then for any ε > 0, we can write{
〈a+ εg, x̄〉 − εt̄ ≥ c+ δ + ε(〈g, x̄〉 − t̄) = c1(ε)

∀(x, t) ∈ epi(f) : 〈a+ εg, x〉 − εt ≤ c− δ + ε(〈g, x〉 − t) ≤ c− δ + ε(〈g, x0〉 − f(x0)) = c2(ε).

We want ε > 0 such that c1(ε) > c2(ε), i.e., 2δ+ε(f(x0)+〈g, x̄− x0〉− t̄) > 0 which can be achieved
for small enough ε.

Assume thus that b > 0: We can assume wlog that b = 1. Putting t = f(x) in the second line of
(1) tells us that 〈a, x〉 − f(x) < c for all x ∈ dom(f) which implies, f∗(a) ≤ c. In turn this means
that f∗∗(x̄) ≥ 〈a, x̄〉 − f∗(a) ≥ 〈a, x̄〉 − c > t̄ where in the last inequality we used (1). This shows
that (x̄, t̄) /∈ epi(f∗∗) as desired.

Lemma 1 (Subgradients). Let f : Rn → R be convex and lower semicontinuous. For any x ∈
dom(f) and y ∈ dom(f∗) we have

f∗(y) = 〈y, x〉 − f(x) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y). (2)

Proof. Fix y. The vector x ∈ Rn minimizes the convex function ξ 7→ f(ξ) − 〈y, ξ〉 iff the zero
element is in the subdifferential at ξ = x. This tells us that f∗(y) = 〈y, x〉 − f(x) iff y ∈ ∂f(x),
which is the first equivalence.
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We now show y ∈ ∂f(x) =⇒ x ∈ ∂f∗(y). This is immediate since if y ∈ ∂f(x) then for any
z we have f∗(z) ≥ 〈z, x〉 − f(x) = f∗(y) + 〈z − y, x〉 which means that x ∈ ∂f∗(y). The reverse
inclusion x ∈ ∂f∗(y) =⇒ y ∈ ∂f(x) follows from f∗∗ = f .

Theorem 12.2 (Smoothness of f∗). Assume f : Rn → R is convex and lower semicontinuous. If
f is m-strongly convex with respect to ‖ · ‖, then dom(f∗) = Rn and f∗ is differentiable with

∇(f∗)(y) = argmax
x∈Rn

{〈y, x〉 − f(x)} .

Moreover, ∇(f∗) is (1/m)-Lipschitz with respect to ‖ · ‖, i.e., ‖∇f∗(y1) −∇f∗(y2)‖ ≤ ‖y1 − y2‖∗,
where ‖ · ‖∗ is the dual norm

Proof. Since f is strongly convex, the function x 7→ f(x) − 〈y, x〉 is bounded from below for any
y ∈ Rn, and thus its infimum is > −∞. This shows that f∗(y) is defined for all y. Since this
function is lower semicontinuous and strongly convex, its infimum is attained at a unique point.
By (2) we get that ∂(f∗)(y) consists of this unique infimizer, i.e., f∗ is smooth and

∇(f∗)(y) = argmax
x∈Rn

{〈y, x〉 − f(x)} = x∗(y).

The function x 7→ f(x)− 〈y1, x〉 is m-strongly convex, and so we have, for any x

f(x)− 〈y1, x〉 ≥ f(x∗(y1))− 〈y1, x∗(y1)〉+ (m/2)‖x− x∗(y1)‖2.

f(x)− 〈y2, x〉 ≥ f(x∗(y2))− 〈y2, x∗(y2)〉+ (m/2)‖x− x∗(y2)‖2.

The two combined tell us that

m‖x∗(y1)− x∗(y2)‖2 ≤ 〈y1 − y2, x∗(y1)− x∗(y2)〉 ≤ ‖y1 − y2‖∗‖x∗(y1)− x∗(y2)‖

i.e.,
‖x∗(y1)− x∗(y2)‖ ≤ (1/m)‖y1 − y2‖∗.

12.2 Lagrangian duality

Let f : Rn → R, and consider the following minimization problem with an affine constraint:

min
x∈Rn

f(x) subject to Ax = b, (3)

where A : Rn → Rm is a linear map, and b ∈ Rm. The Lagrangian of this problem is defined as

L(x, z) = f(x) + 〈z, b−Ax〉

where z is the dual variable for the constraint Ax = b. The dual function is

g(z) = min
x∈Rn

L(x, z).

For any z ∈ Rm and x ∈ Rn such that Ax = b, we clearly have g(z) ≤ f(x) since for such x we
have L(x, z) = f(x). Thus g(z) gives a lower bound on the optimal value of (3). The best such
lower bound can be obtained by maximizing g(z). This is the dual problem:

max
z∈Rn

g(z). (4)
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Note that
g(z) = min

x∈Rn
L(x, z) = 〈b, z〉+ min

x∈Rn
−
〈
AT z, x

〉
+ f(x)

= 〈b, z〉 − max
x∈Rn

〈
AT z, x

〉
− f(x)

= 〈b, z〉 − f∗(AT z).

We note that g(z) is concave in z, and thus the dual problem (4) is a concave maximization problem.
Let p∗ = min {f(x) : Ax = b} and let d∗ = maxz∈Rn g(z). Note that g(z) ≤ p∗ for all z so that

d∗ ≤ p∗.

Theorem 12.3 (Strong duality). Assume f is convex and that {x : Ax = b} ∩ int(dom f) is not
empty (Slater’s condition). Then p∗ = d∗.

Proof. We prove the theorem in the special case where the solution of (3) is attained. Let x̄ be the
optimal solution of (3). Letting C = {x : Ax = b}, then necessarily we have 0 ∈ ∂(f+IC)(x̄). Since
C is polyhedral, and C ∩ int dom f 6= ∅, we have ∂(f + IC)(x̄) = ∂f(x̄) +NC(x̄) = ∂f(x̄) + imAT .
So we can write 0 ∈ ∂f(x̄)−AT z̄ for some z̄. Then note that for any x ∈ Rn we have

L(x, z̄) = f(x) + 〈z̄, b−Ax〉 ≥ f(x̄) +
〈
AT z̄, x− x̄

〉
+ 〈z̄, b−Ax〉 = f(x̄).

Hence g(z̄) = minx∈Rn L(x, z̄) ≥ f(x̄). Thus we get

d∗ ≥ g(z̄) ≥ f(x̄) = p∗

as desired.
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