12 Duality

12.1 Conjugate function

Definition 12.1 (Conjugate function). The *Fenchel conjugate* of a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is defined as

$$f^*(y) = \sup_{x \in \mathbb{R}^n} \{ \langle y, x \rangle - f(x) \}.$$

Observe that f^* is always convex and l.s.c. (i.e., $epi(f^*)$ is closed) since it is a supremum of linear functions.

Note that for any y, we have a lower bound on f, namely $\langle y, x \rangle - f^*(y) \leq f(x)$. Taking the supremum over y tells us that $f^{**}(x) \leq f(x)$. The next theorem tells us that we actually have equality when f is convex and lower semi-continuous.

Theorem 12.1 (Biduality). If $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex and l.s.c. then $f^{**} = f$.

Sketch of proof. We will show that $\mathbf{epi}(f) = \mathbf{epi}(f^{**})$. The inclusion \subseteq already follows from $f^{**} \leq f$. To prove the reverse inclusion assume $(\bar{x}, \bar{t}) \notin \mathbf{epi}(f)$. We will show that $(\bar{x}, \bar{t}) \notin \mathbf{epi}(f^{**})$. Since $\mathbf{epi}(f)$ is convex and closed (since f is l.s.c.), the separating hyperplane theorem tells us there is $(a, b) \in \mathbb{R}^n \times \mathbb{R} \setminus \{0\}$ such that

$$\begin{cases} \langle a, \bar{x} \rangle - b\bar{t} \ge c + \delta > c \\ \langle a, x \rangle - bt \le c - \delta < c \quad \forall (x, t) \in \mathbf{epi}(f). \end{cases}$$
(1)

Letting $t \to +\infty$ in the second line above tells us that $b \ge 0$.

We can further assume that $b \neq 0$ by perturbing the hyperplane slightly: indeed, assuming b = 0, let x_0 be any point where f has a subgradient $g \in \partial f(x_0)$. Then for any $\epsilon > 0$, we can write

$$\begin{cases} \langle a + \epsilon g, \bar{x} \rangle - \epsilon \bar{t} \ge c + \delta + \epsilon (\langle g, \bar{x} \rangle - \bar{t}) = c_1(\epsilon) \\ \forall (x, t) \in \mathbf{epi}(f) : \langle a + \epsilon g, x \rangle - \epsilon t \le c - \delta + \epsilon (\langle g, x \rangle - t) \le c - \delta + \epsilon (\langle g, x_0 \rangle - f(x_0)) = c_2(\epsilon). \end{cases}$$

We want $\epsilon > 0$ such that $c_1(\epsilon) > c_2(\epsilon)$, i.e., $2\delta + \epsilon(f(x_0) + \langle g, \bar{x} - x_0 \rangle - \bar{t}) > 0$ which can be achieved for small enough ϵ .

Assume thus that b > 0: We can assume whog that b = 1. Putting t = f(x) in the second line of (1) tells us that $\langle a, x \rangle - f(x) < c$ for all $x \in \mathbf{dom}(f)$ which implies, $f^*(a) \leq c$. In turn this means that $f^{**}(\bar{x}) \geq \langle a, \bar{x} \rangle - f^*(a) \geq \langle a, \bar{x} \rangle - c > \bar{t}$ where in the last inequality we used (1). This shows that $(\bar{x}, \bar{t}) \notin \mathbf{epi}(f^{**})$ as desired. \Box

Lemma 1 (Subgradients). Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and lower semicontinuous. For any $x \in$ dom(f) and $y \in$ dom (f^*) we have

$$f^*(y) = \langle y, x \rangle - f(x) \iff y \in \partial f(x) \iff x \in \partial f^*(y).$$
(2)

Proof. Fix y. The vector $x \in \mathbb{R}^n$ minimizes the convex function $\xi \mapsto f(\xi) - \langle y, \xi \rangle$ iff the zero element is in the subdifferential at $\xi = x$. This tells us that $f^*(y) = \langle y, x \rangle - f(x)$ iff $y \in \partial f(x)$, which is the first equivalence.

We now show $y \in \partial f(x) \implies x \in \partial f^*(y)$. This is immediate since if $y \in \partial f(x)$ then for any z we have $f^*(z) \ge \langle z, x \rangle - f(x) = f^*(y) + \langle z - y, x \rangle$ which means that $x \in \partial f^*(y)$. The reverse inclusion $x \in \partial f^*(y) \implies y \in \partial f(x)$ follows from $f^{**} = f$.

Theorem 12.2 (Smoothness of f^*). Assume $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex and lower semicontinuous. If f is m-strongly convex with respect to $\|\cdot\|$, then $\operatorname{dom}(f^*) = \mathbb{R}^n$ and f^* is differentiable with

$$\nabla(f^*)(y) = \operatorname*{argmax}_{x \in \mathbb{R}^n} \left\{ \langle y, x \rangle - f(x) \right\}.$$

Moreover, $\nabla(f^*)$ is (1/m)-Lipschitz with respect to $\|\cdot\|$, i.e., $\|\nabla f^*(y_1) - \nabla f^*(y_2)\| \le \|y_1 - y_2\|_*$, where $\|\cdot\|_*$ is the dual norm

Proof. Since f is strongly convex, the function $x \mapsto f(x) - \langle y, x \rangle$ is bounded from below for any $y \in \mathbb{R}^n$, and thus its infimum is $> -\infty$. This shows that $f^*(y)$ is defined for all y. Since this function is lower semicontinuous and strongly convex, its infimum is attained at a unique point. By (2) we get that $\partial(f^*)(y)$ consists of this unique infimizer, i.e., f^* is smooth and

$$\nabla(f^*)(y) = \operatorname*{argmax}_{x \in \mathbb{R}^n} \left\{ \langle y, x \rangle - f(x) \right\} = x^*(y).$$

The function $x \mapsto f(x) - \langle y_1, x \rangle$ is *m*-strongly convex, and so we have, for any x

$$f(x) - \langle y_1, x \rangle \ge f(x^*(y_1)) - \langle y_1, x^*(y_1) \rangle + (m/2) \|x - x^*(y_1)\|^2.$$

$$f(x) - \langle y_2, x \rangle \ge f(x^*(y_2)) - \langle y_2, x^*(y_2) \rangle + (m/2) \|x - x^*(y_2)\|^2.$$

The two combined tell us that

$$m\|x^*(y_1) - x^*(y_2)\|^2 \le \langle y_1 - y_2, x^*(y_1) - x^*(y_2) \rangle \le \|y_1 - y_2\|_* \|x^*(y_1) - x^*(y_2)\|$$

i.e.,

$$||x^*(y_1) - x^*(y_2)|| \le (1/m)||y_1 - y_2||_*$$

12.2 Lagrangian duality

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, and consider the following minimization problem with an affine constraint:

$$\min_{x \in \mathbb{R}^n} \quad f(x) \quad \text{subject to} \quad Ax = b, \tag{3}$$

where $A: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map, and $b \in \mathbb{R}^m$. The Lagrangian of this problem is defined as

$$L(x,z) = f(x) + \langle z, b - Ax \rangle$$

where z is the dual variable for the constraint Ax = b. The dual function is

$$g(z) = \min_{x \in \mathbb{R}^n} L(x, z).$$

For any $z \in \mathbb{R}^m$ and $x \in \mathbb{R}^n$ such that Ax = b, we clearly have $g(z) \leq f(x)$ since for such x we have L(x, z) = f(x). Thus g(z) gives a *lower bound* on the optimal value of (3). The best such lower bound can be obtained by maximizing g(z). This is the *dual problem*:

$$\max_{z \in \mathbb{R}^n} g(z). \tag{4}$$

Note that

$$g(z) = \min_{x \in \mathbb{R}^n} L(x, z) = \langle b, z \rangle + \min_{x \in \mathbb{R}^n} - \langle A^T z, x \rangle + f(x)$$
$$= \langle b, z \rangle - \max_{x \in \mathbb{R}^n} \langle A^T z, x \rangle - f(x)$$
$$= \langle b, z \rangle - f^*(A^T z).$$

We note that g(z) is concave in z, and thus the dual problem (4) is a concave maximization problem.

Let $p^* = \min \{f(x) : Ax = b\}$ and let $d^* = \max_{z \in \mathbb{R}^n} g(z)$. Note that $g(z) \le p^*$ for all z so that $d^* \le p^*$.

Theorem 12.3 (Strong duality). Assume f is convex and that $\{x : Ax = b\} \cap \operatorname{int}(\operatorname{dom} f)$ is not empty (Slater's condition). Then $p^* = d^*$.

Proof. We prove the theorem in the special case where the solution of (3) is attained. Let \bar{x} be the optimal solution of (3). Letting $C = \{x : Ax = b\}$, then necessarily we have $0 \in \partial(f + I_C)(\bar{x})$. Since C is polyhedral, and $C \cap \operatorname{int} \operatorname{dom} f \neq \emptyset$, we have $\partial(f + I_C)(\bar{x}) = \partial f(\bar{x}) + N_C(\bar{x}) = \partial f(\bar{x}) + \operatorname{im} A^T$. So we can write $0 \in \partial f(\bar{x}) - A^T \bar{z}$ for some \bar{z} . Then note that for any $x \in \mathbb{R}^n$ we have

$$L(x,\bar{z}) = f(x) + \langle \bar{z}, b - Ax \rangle \ge f(\bar{x}) + \langle A^T \bar{z}, x - \bar{x} \rangle + \langle \bar{z}, b - Ax \rangle = f(\bar{x}).$$

Hence $g(\bar{z}) = \min_{x \in \mathbb{R}^n} L(x, \bar{z}) \ge f(\bar{x})$. Thus we get

$$d^* \ge g(\bar{z}) \ge f(\bar{x}) = p^*$$

as desired.