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13 Dual methods

Last lecture we saw that to any convex optimization problem with an affine constraint, one can
associate a Lagrange dual. The optimal value of the dual problem is equal to the optimal value of
the original, primal, problem under some mild conditions (e.g., Slater’s condition). In some cases,
the dual problem has a structure that is more amenable to algorithms than the original, primal,
problem. We explore the possibility of applying various optimization methods to the dual problem.

Consider an optimization problem of the form

min
x∈Rn

f(x) + h(Ax). (1)

Problems of the type (1) arise often in statistics and inverse problems where, e.g., f(x) is a data-
fidelity term, and h(Ax) is a regularization term. Typically f is smooth and strongly convex, and h
is nonsmooth with a simple prox. Note that even if proxh is easy to compute, computing proxh◦A
can be hard.

Example (Signal denoising using total variation). Consider the problem of denoising a 1D signal
u ∈ Rn with total-variation regularization

min
x∈Rn

n∑
i=1

(xi − ui)2 + λ

n−1∑
i=1

|xi+1 − xi|.

This problem can be put in the form (1) with f(x) = ‖x − u‖22, h(x) = ‖x‖1 and A is the discrete
difference operator.

We can rewrite problem (1) as

min
x,y

f(x) + h(y) subject to y = Ax.

The Lagrangian is
L(x, y, z) = f(x) + h(y) + 〈z,Ax− y〉 (2)

and the dual function is

g(z) = min
x,y

L(x, y, z) = min
x,y
{f(x) + 〈z,Ax〉+ h(y)− 〈z, y〉}

= min
x
{f(x) + 〈z,Ax〉}+ min

y
{h(y)− 〈z, y〉}

= −f∗(−AT z)− h∗(z).

(3)

So the dual problem is
max
z∈Rn

−f∗(−AT z)− h∗(z). (4)

1



Proximal gradient to dual If f is strongly convex then z 7→ f∗(−AT z) is smooth and its
gradient has Lipschitz constant ‖A‖2/m where m is the strong convexity parameter of f . One can
apply the proximal gradient method to the dual problem (4). This gives the iteration rule:

zk+1 = proxth∗(zk + tA∇f∗(−AT zk)). (5)

where t > 0 is the time step. We can simplify the iteration rule using the definitions of ∇f∗ and of
prox. Indeed, we saw before that since f is strongly convex

∇f∗(y) = argmax
x

{〈y, x〉 − f(x)} = argmin
x
{f(x)− 〈y, x〉} .

Thus Equation (5) takes the form

x̂ = argmin
x
{f(x) + 〈zk, Ax〉}

zk+1 = proxth∗(zk + tAx̂).

We can further simplify the equations above using Moreau’s identity (see exercise sheet 3) which
tells us that proxφ∗(x) = x − proxφ(x) for any closed convex function φ. With φ = th∗ we get
φ∗(y) = (th∗)∗(y) = th(y/t) (check!). Also one can verify that proxth(·/t)(x) = tproxt−1h(x/t).
At the end, after all simplifications, the proximal gradient method applied to the dual problem (4)
takes the form:

Proximal gradient
applied to dual pb (4):


x̂ = argmin

x
{f(x) + 〈zk, Ax〉}

ŷ = argmin
y

{
h(y)− 〈zk, y〉+

t

2
‖Ax̂− y‖22

}
zk+1 = zk + t(Ax̂− ŷ).

(6)

In the signal denoising example (where f(x) = ‖x − u‖22 and h(z) = ‖z‖1) note that x̂ and ŷ can
be computed easily with a closed-form expression.

Comparison with dual ascent: It is instructive to compare (6) to a subgradient ascent method
applied to the dual problem (4). Using the expression of the dual function in (3) dual ascent takes
the form

Subgradient ascent
applied to dual pb (4):


x̂ = argmin

x
{f(x) + 〈zk, Ax〉}

ŷ = argmin
y
{h(y)− 〈zk, y〉}

zk+1 = zk + tk(Ax̂− ŷ).

(7)

Unless f and h are both strongly convex, the dual function g(z) in (3) is not going to be smooth;
this means that the step sizes tk has to be decreasing, and in general the above subgradient ascent
is going to be very slow.

Augmented Lagrangian method It is also instructive to compare (6) with the augmented
Lagrangian method, which does not require any strong convexity assumption on f or h: observe
that the original problem can be written as

min
x,y

{
f(x) + h(y) +

t

2
‖Ax− y‖22 : Ax = y

}
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where t > 0. The Lagrangian of this problem is

Lt(x, y, z) = f(x) + h(y) + 〈z,Ax− y〉+
t

2
‖Ax− y‖22.

This is known as the augmented Lagrangian of the original problem. The dual function is

gt(z) = min
x,y

{
f(x) + h(y) + 〈z,Ax− y〉+

t

2
‖Ax− y‖22

}
. (8)

Because of the quadratic term t
2‖Ax−y‖

2
2, one can show that g is (1/t)-smooth1, and that ∇gt(z) =

Ax̂ − ŷ where (x̂, ŷ) are minimizers in (8). The augmented Lagrangian method corresponds to a
gradient ascent on gt, i.e., it takes the form

Augmented Lagrangian
method:

(x̂, ŷ) = argmin
x,y

{
f(x) + h(y) + 〈zk, Ax− y〉+

t

2
‖Ax− y‖22

}
zk+1 = zk + t(Ax̂− ŷ).

(9)

1Indeed, note that by introducing v = Ax− y we can write gt(z) = minv {minx{f(x) + h(Ax− v)}+ (t/2)‖v‖22 +
zT v} = −ψ∗(−z) where ψ(v) = (t/2)‖v‖22 +minx(f(x) + h(Ax− v)) is t-strongly convex.
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