
Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

14 Alternating Direction Method of Multipliers / Douglas-Rachford

We are still considering optimization problems of the form

min
x∈Rn

f(x) + h(Ax) (1)

where f and h are convex, the dual of which (after introducing y = Ax) is

max
z∈Rm

−f∗(−AT z)− h∗(z). (2)

Last lecture we looked at the proximal gradient method applied to (2), and we compared it with
the supgradient method and the augmented Lagrangian methods for (2).

One problem with the dual proximal gradient method, is that it requires the function f to be
strongly convex. For the augmented Lagrangian method, a problem is that the variables (x, y) are
coupled in the update step. To remedy this, we consider the ADMM algorithm which introduces a
quadratic penalty in the x-update step, while maintaining the x and y-updates decoupled. It takes
the following form:

ADMM


xk+1 = argmin

x

{
f(x) + 〈zk, Ax〉+

t

2
‖Ax− yk‖22

}
yk+1 = argmin

y

{
h(y)− 〈zk, y〉+

t

2
‖Axk+1 − y‖22

}
zk+1 = zk + t(Axk+1 − yk+1).

(3)

Note that the x-update step depends on yk, while the y-update step depends on xk+1. The
ADMM algorithm is a very popular algorithm for optimization, due to its versatility and wide
applicability. See [BPC+11] for examples.

Just like its close relatives, the ADMM can also be seen as a particular optimization algorithm
applied to the dual. This algorithm is known as the Douglas-Rachford algorithm, which we introduce
next.

14.1 Douglas-Rachford algorithm

The Douglas-Rachford method is an algorithm to minimize the sum of two convex functions

min
x∈Rn

f(x) + h(x)

when both functions f and h have a simple proximal operator. The Douglas-Rachford algorithm
can be expressed in the following way:

xk+1 = proxf (yk − zk)
yk+1 = proxh(xk+1 + zk)

zk+1 = zk + (xk+1 − yk+1).

(4)

1



Fixed points One can check that if (xk+1, yk+1, zk+1) = (xk, yk, zk) = (x̄, ȳ, z̄) then necessarily we
have reached an optimal solution of the problem. Indeed if zk+1 = zk then xk+1 = yk+1, i.e., x̄ = ȳ.
From the first equation we get 0 ∈ ∂f(xk+1)+(xk+1−yk+zk) which implies, since xk+1 = yk+1 = yk,
−z̄ ∈ ∂f(x̄). From the second equation, we get that 0 ∈ ∂h(yk+1) + (yk+1 − xk+1 − zk), and so
using the assumptions we get z̄ ∈ ∂h(x̄). This implies that 0 ∈ ∂f(x̄) + ∂h(x̄) as desired.

The Douglas-Rachford operator One can combine the iterates (4) into a single sequence (wk)
given by wk+1 = xk+1 + zk. Then, it is not hard to verify that the Douglas-Rachford algorithm is
equivalent to

wk+1 = T (wk)

where T is the Douglas-Rachford operator:

T (w) = proxf (2 proxh(w)− w) + w − proxh(w). (5)

To prove the convergence of the DR algorithm, we will prove that T is a firmly nonexpansive map.

Definition 14.1. A map T : Rn → Rn is firmly nonexpansive if

‖T (w)− T (w′)‖22 ≤
〈
w − w′, T (w)− T (w′)

〉
∀w,w′ ∈ Rn.

We have already seen that proximal operators of convex functions are firmly nonexpansive. This
allows us to prove that the Douglas-Rachford operator in (5) is firmly nonexpansive. Indeed, let
w,w′ ∈ Rn and let y = proxh(w) and x = proxf (2y−w), so that T (w) = x+w− y. Since proxf
and proxh are firmly nonexpansive, we have:{

‖y − y′‖22 ≤ 〈y − y′, w − w′〉
‖x− x′‖22 ≤ 〈x− x′, 2(y − y′)− (w − w′)〉 .

Now we can write

‖T (w)− T (w′)‖22 = ‖x− x′ + w − w′ − (y − y′)‖22
= ‖x− x′‖22 + ‖w − w′‖22 + ‖y − y′‖22

+ 2
〈
x− x′, w − w′

〉
− 2

〈
x− x′, y − y′

〉
− 2

〈
y − y′, w − w′

〉
≤
〈
x− x′, w − w′

〉
+ ‖w − w′‖22 −

〈
y − y′, w − w′

〉
=
〈
(x+ w − y)− (x′ + w′ − y′), w − w′

〉
=
〈
T (w)− T (w′), w − w′

〉
.

EXERCISE: Show that T is firmly nonexpansive, if, and only if, T = (1/2)(I + U) where U is
a nonexpansive map.

Now we prove a general convergence result about firmly nonexpansive iterations.

Theorem 14.1. Assume T : Rn → Rn is a firmly nonexpansive map that has at least one fixed
point w∗. Then the iterates wk+1 = T (wk) converge to some fixed point of T , and furthermore

min
0≤j≤k−1

‖wj − T (wj)‖22 ≤
‖w0 − w∗‖22

k
.

The following lemma is easy to verify.

Lemma 1. If T is firmly nonexpansive, then G = I − T is also firmly nonexpansive.

2



Proof. We have ‖Gw−Gw′‖22 = ‖w−w′‖22 + ‖Tw− Tw′‖22 − 2 〈w − w′, Tw − Tw′〉 ≤ ‖w−w′‖22 −
〈w − w′, Tw − Tw′〉 = 〈w − w′, Gw −Gw′〉 as desired.

We now prove the theorem.

Proof. Let w∗ be any fixed point of T . Then for any w, we have

‖T (w)− w∗‖22 − ‖w − w∗‖22 ≤ 〈w − w∗, T (w)− w∗〉 − ‖w − w∗‖22
= 〈w − w∗,−G(w)〉 ≤ −‖G(w)‖22

(6)

where we used the fact that G is firmly nonexpansive, and G(w∗) = 0. Thus, summing these
inequalities and rearranging we get

k−1∑
i=0

‖G(wi)‖22 ≤ ‖w0 − w∗‖22.

Let rbest,k = min{‖G(w0)‖22, . . . , G(wk−1)‖22}, we see that

rbest,k ≤
1

k

k−1∑
i=0

‖G(wi)‖22 ≤
‖w0 − w∗‖22

k
.

and so rbest,k ≤ ‖w0 − w∗‖22/k.
It remains to show that (wi) converges to a fixed point of T . The inequality (6) shows that

‖wi − w∗‖2 is nonincreasing for any choice of fixed point of w∗ of T ; in particular (wi) is bounded
and so has a limit point w̄. Let’s show that wi → w̄. First note that since ‖G(wi)‖2 → 0, and that
G is continuous, we must have G(w̄) = 0, i.e., w̄ is a fixed point for T . It follows that the sequence
‖wi − w̄‖22 is nonincreasing, and has 0 as a limit point. Thus it must be that limi ‖wi − w̄‖2 = 0,
i.e., wi → w̄.

Relation between ADMM and Douglas-Rachford If we apply the Douglas-Rachford method
to the dual problem (2) we obtain the following iterates:

x̃k+1 = proxf∗◦−AT (ỹk − z̃k)
ỹk+1 = proxh∗(x̃k+1 + z̃k)

z̃k+1 = z̃k + (x̃k+1 − ỹk+1)

These equations can be simplified using Moreau’s identity, and its generalization:

proxf∗◦AT (x) = x−A argmin
u
{f(u) + (1/2)‖Au− x‖22}. (7)

Using this identity, we get:
x̃k+1 = ỹk − z̃k +A argminx

{
f(x) + (1/2)‖Ax− (z̃k − ỹk)‖22

}
ỹk+1 = x̃k+1 + z̃k − argminy

{
h(y) + (1/2)‖y − (x̃k+1 + z̃k)‖22

}
z̃k+1 = z̃k + (x̃k+1 − ỹk+1).

3



By a suitable change of variables, the iterates can be shown to be equivalent to the ADMM method
of (3). Indeed, by calling xk+1 the argmin in the first line, yk+1 the argmin in the second line, and
zk = ỹk, we see that the iterations above can be written as (check!)

xk+1 = argminx
{
f(x) + (1/2)‖Ax− (yk − zk)‖22

}
yk+1 = argminy

{
h(y) + (1/2)‖y − (Axk+1 + zk)‖22

}
xk+1 = zk + (Axk+1 − yk+1).

It is easy to see that these are the same as (3) with t = 1 (the case with general t can be obtained
by appropriately scaling the functions f and h).

14.2 Historical note on the Douglas-Rachford algorithm

The Douglas-Rachford algorithm was invented in the 1950s [DR56] as a method to solve the heat
equation, i.e.,

∂u

∂t
= ∇2

xu+∇2
yu.

Let A = −∇2
x and B = −∇2

y, so that the equation can be written as ut = −Au−Bu. We assume
we have discretized along space variables x and y using finite differences; as such, with a suitable
ordering of the nodes, A and B are tridiagonal. If we use the backward Euler method to solve this
problem we end up with the following scheme:

un+1 = un + λ(−Aun+1 −Bun+1)

i.e., un+1 = (I + λ(A + B))−1un where λ > 0 is the time step. Solving a linear system with
I + λ(A + B) can be expensive, unlike solving linear systems with I + λA and I + λB which are
much easier because the latter are tridiagonal after suitable permutation of the nodes (different
for A and B). Splitting schemes have thus been developed to address this need. There are many
possible splittings one can do:

• One possibility for splitting is the forward backward splitting where we use forward Euler on
B, and backward Euler on A (or vice-versa):

un+1 = un + λ(−Aun+1 −Bun)

This only requires solving a linear system involving I + λA.

• Another possibility, proposed by Peaceman-Rachford, is to alternate the roles of A and B in
forward-backward splitting, i.e.,{

un+1/2 = un + λ(−Aun+1/2 −Bun)

un+1 = un+1/2 + λ(−Aun+1/2 −Bun+1)

This requires solving, at each time step, a linear system with I+λA and a linear system with
I + λB.

• The third one, proposed by Douglas-Rachford, proceeds as follows. Even though (I+λA+λB)
is difficult to invert, we can see that (I +λA+λB+λ2AB) is actually easy to invert because

4



the latter is simply (I + λA)(I + λB). So this motivates us to consider the following altered
backward difference formula:

un+1 = un + λ(−Aun+1 −Bun+1) + λ2AB(un − un+1)︸ ︷︷ ︸ .
This reduces to (I +λA)(I +λB)un+1 = un +λ2ABun, which again only requires (I +λA)−1

and (I + λB)−1.

Extension to nonlinear operators The above applies to any positive linear operators A and
B, and not just to the Laplacian. In fact, these methods were shown to be convergent for nonlinear
maximal monotone operators A,B by Lions and Mercier in [LM79]. The latter Douglas-Rachford
can be written as

un+1 = Tun

where T = (I + λB)−1(I + λA)−1(I + λ2AB). If we write I + λ2AB = (I + λA)λB + I − λB, we
get

T = (I + λB)−1
[
(I + λA)−1(I − λB) + λB

]
Call (I + λB)−1vn = un, then we get

vn+1 = ((I + λA)−1(I − λB) + λB)(I + λB)−1vn

=
[
(I + λA)−1(2(I + λB)−1 − I) + I − (I + λB)−1

]
vn.

(8)

where we used the fact that (I − λB)(I + λB)−1 = 2(I + λB)−1 − I, and λB(I + λB)−1 =
I − (I + λB)−1. If A = ∂f and B = ∂h, then (I + λA)−1 = proxλf and (I + λB)−1 = proxλh
and so the equation above is precisely the Douglas-Rachford iteration (5)! For a nice survey of
monotone operator methods in optimization, see [RB16].

References

[BPC+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Dis-
tributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends R© in Machine learning, 3(1):1–122, 2011. 1

[DR56] Jim Douglas and Henry H Rachford. On the numerical solution of heat conduction
problems in two and three space variables. Transactions of the American mathematical
Society, 82(2):421–439, 1956. 4

[LM79] Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of two non-
linear operators. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979. 5

[RB16] Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput.
Math, 15(1):3–43, 2016. 5

5


	Alternating Direction Method of Multipliers / Douglas-Rachford
	Douglas-Rachford algorithm


