16 Newton's method (continued)

Recall Newton's method:

$$
x_{k+1}=x_{k}-t_{k} \nabla^{2} f\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)
$$

where $t_{k}>0$ is the step size.
Assume that f is m-strongly convex, and that $\nabla^{2} f(x)$ is M-Lipschitz with respect to the operator norm.

Convergence of Newton's method We saw last lecture that with $t_{k}=1$, the iterates satisfy

$$
\frac{M}{2 m^{2}}\left\|\nabla f\left(x_{k+1}\right)\right\|_{2} \leq\left(\frac{M}{2 m^{2}}\left\|\nabla f\left(x_{k}\right)\right\|_{2}\right)^{2} .
$$

In particular, if at some iteration i we have $\frac{M}{2 m^{2}}\left\|\nabla f\left(x_{i}\right)\right\|_{2}=1-\delta<1$ then we get $\left\|\nabla f\left(x_{k}\right)\right\|_{2} \rightarrow 0$ at a quadratic rate, i.e., $\left\|\nabla f\left(x_{k}\right)\right\|_{2} \leq \frac{2 m^{2}}{M}(1-\delta)^{2^{k-i}}$.

Unfortunately Newton's method with unit step size $t_{k}=1$ does not always converge. Here is an example (from [Pol]): consider a convex function $f(x)$ so that

$$
f(x)= \begin{cases}(x-1)^{2} & \text { if } x \leq-1 \\ (x+1)^{2} & \text { if } x \geq 1\end{cases}
$$

and on $[-1,1]$ it is chosen (arbitrarily) so that overall the function is smooth and convex (see figure below).

Figure 1: Example where Newton's iterations with $t_{k}=1$ do not converge. If $x_{0}=1$, the sequence of iterates produced is $x_{k}=(-1)^{k}$.

We see on this function that if $x_{0}=+1$, the quadratic approximation of f at x is $(x+1)^{2}$ whose minimum is at $x=-1$, and thus $x_{1}=-1$. With the same reasoning we get $x_{2}=+1$, and we see that Newton's method with unit step size oscillates between the points +1 and -1 .

For this reason, we need to introduce a non-unit step size, at least for the first iterations of the algorithm.

We can prove the following:

Proposition 16.1. Assume f is m-strongly and L-smooth. The Newton's method with step size $t_{k}=m / L$ satisfies $f\left(x^{+}\right)-f(x) \leq-c\|\nabla f(x)\|_{2}^{2}$ with $c=m /\left(2 L^{2}\right)$.

Proof. We have, since f is L-smooth (and using notation $\left.\lambda_{f}(x)^{2}=\left\langle\nabla f(x), \nabla^{2} f(x)^{-1} \nabla f(x)\right\rangle\right)$:

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f(x)+\left\langle\nabla f(x), x^{+}-x\right\rangle+\frac{L}{2}\left\|x^{+}-x\right\|_{2}^{2} \\
& =f(x)-t\left\langle\nabla f(x), \nabla^{2} f(x)^{-1} \nabla f(x)\right\rangle+\frac{L}{2} t^{2}\left\|\nabla^{2} f(x)^{-1} \nabla f(x)\right\|_{2}^{2} \\
& \leq f(x)-t \lambda_{f}(x)^{2}+\frac{L}{2 m} t^{2}\left\|\nabla^{2} f(x)^{-1 / 2} \nabla f(x)\right\|_{2}^{2} \\
& =f(x)-\left(t-\frac{L}{2 m} t^{2}\right) \lambda_{f}(x)^{2}
\end{aligned}
$$

where in the second inequality we used that $\nabla^{2} f(x)^{-1} \preceq(1 / m) I$. With $t=m / L$ we thus get $f\left(x^{+}\right)-f(x) \leq-\frac{m}{2 L} \lambda_{f}(x)^{2} \leq-\frac{m}{2 L^{2}}\|\nabla f(x)\|_{2}^{2}$ where the last inequality follows from $\nabla^{2} f(x)^{-1} \succeq$ $\frac{1}{L} I$.

We can now summarize the behaviour of Newton's method. Fix $\gamma=m^{2} / M$.

- Phase 1: $\left\|\nabla f\left(x_{k}\right)\right\|_{2} \geq \gamma$, then by using a step size $t_{k}=m / L$ we get $f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq-c \gamma^{2}$.
- Phase 2: $\left\|\nabla f\left(x_{k}\right)\right\|_{2} \leq \gamma$: we have $M /\left(2 m^{2}\right)\left\|\nabla f\left(x_{k}\right)\right\|_{2} \leq 1 / 2$ and so we get quadratic convergence from this iteration onwards, i.e., $\left\|\nabla f\left(x_{k}\right)\right\|_{2} \leq 2 \gamma(1 / 2)^{2^{k-k_{2}}}$ where k_{2} is the first iteration of phase 2.

References

[Pol] Boris T Polyak. Introduction to optimization. 1987. Optimization Software, Inc, New York. 1

