2 Review of convexity

2.1 Convex sets

Definition 2.1. A set $C \subset \mathbb{R}^{n}$ is convex if for any $x, y \in C$ and $\lambda \in[0,1], \lambda x+(1-\lambda) y \in C$.
Proposition 2.1. If C is a convex set, and $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, then $A(C)$ is convex. If $\left(C_{j}\right)_{j \in J}$ is a collection of convex sets, then $C=\cap_{j \in J} C_{j}$ is convex.

Examples:

A halfspace is a set of the form $\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle \leq b\right\}$ where $a \neq 0$,

$$
\langle a, x\rangle=a^{T} x=\sum_{i=1}^{n} a_{i} x_{i}
$$

is the Euclidean inner product.
An intersection of (any number of) halfspaces is a convex set. If C is an intersection of a finite number of halfspaces it is called a convex polyhedron.
It turns out that any closed convex set can be written as an intersection of halfspaces! This can be proved using the following fundamental fact about convex sets.

Theorem 2.1 (Separating hyperplane theorem). Let $C \subset \mathbb{R}^{n}$ be a convex set, and let $y \notin C$. Then there is $a \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}$ such that

$$
\langle a, x\rangle \leq b \forall x \in C \quad \text { and } \quad\langle a, y\rangle \geq b .
$$

Proof. We give the proof when C is closed. The general case is left as an exercise. If C is closed we can define the projection map on C, namely $p_{C}(y):=\min \left\{\|y-x\|_{2}: x \in C\right\}$ is well defined and satisfies $\left\langle y-p_{C}(y), x-p_{C}(y)\right\rangle \leq 0$ for any $x \in C$. Let $a=y-p_{C}(y)$ and $b=\left\langle a, p_{C}(y)\right\rangle+\frac{1}{2}\|a\|_{2}^{2}$. Note that $\langle a, y\rangle-b=\|a\|_{2}^{2}-\frac{1}{2}\|a\|_{2}^{2}>0$. Also for any $x \in C$ we have $\langle a, x\rangle-b=\left\langle y-p_{C}(y), x-\right.$ $\left.p_{C}(y)\right\rangle-\frac{1}{2}\|a\|_{2}^{2}<0$ which is what we wanted.

EXERCISE: Use theorem above to prove that if C is a closed convex set, then C is equal to the intersection of halfspaces that contain it.

Supporting hyperplane: The result above can be used to prove the existence of supporting hyperplanes. If C is a closed convex set, and $y \in C \backslash \operatorname{int} C$, then there is a hyperplane that supports C at y, i.e., there is $a \in \mathbb{R}^{n} \backslash\{0\}$ and $b \in \mathbb{R}^{n}$ such that $\langle a, y\rangle=b$ and $\langle a, x\rangle \leq b$ for all $x \in C$.

2.2 Convex functions

Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$.
Definition 2.2. A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex if for any $x, y \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \tag{1}
\end{equation*}
$$

The domain of f is the set of x where $f(x)$ is finite: $\operatorname{dom}(f)=\left\{x \in \mathbb{R}^{n}: f(x)<\infty\right\}$. Note that $\operatorname{dom}(f)$ is a convex set by (1).

The indicator function of a convex set $C \subset \mathbb{R}^{n}$ is

$$
I_{C}(x)= \begin{cases}0 & \text { if } x \in C \\ +\infty & \text { else }\end{cases}
$$

If $f: C \rightarrow \mathbb{R}$ is a convex function defined on a convex set C, then we can always think of f as an (extended-valued) convex function $\mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, by defining f to be $+\infty$ outside of C.

The epigraph of a convex function f is defined as

$$
\operatorname{epi}(f)=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq t\right\}
$$

It is easy to see that f is convex if, and only if, $\mathbf{e p i}(f)$ is a convex set.
Observe that $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex if, and only if, its restriction to any one-dimensional line is convex, i.e., for any $x \in \operatorname{dom}(f)$ and any $h \in \mathbb{R}^{n}$, the function $t \mapsto f(x+t h)$ is convex on the interval $\{t \in \mathbb{R}: x+t h \in \operatorname{dom}(f)\}$. This reduces the problem of proving convexity of a multivariate function, to that of univariate functions.

EXERCISE: Use this to show that the function $X \in \mathbf{S}_{++}^{n} \mapsto-\log \operatorname{det} X$ is convex on the set \mathbf{S}_{++}^{n} of positive definite matrices.

Recall that a univariate differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if, and only if, f^{\prime} is nondecreasing. When f is twice differentiable this is equivalent to $f^{\prime \prime} \geq 0$.

Operations that preserve convexity The following elementary facts are very useful to prove convexity.

1. Linear transformations: If $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex and $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{m}$, then $g(y)=$ $f(A x+b)$ defined on \mathbb{R}^{m} is convex.
2. Pointwise supremum: If $\left(f_{j}\right)_{j \in J}$ is a collection of convex functions defined on \mathbb{R}^{n}, then $f(x)=$ $\sup _{j \in J} f_{j}(x)$ is convex.
3. Perspective: If $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is convex, then $P_{f}:(x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{++} \rightarrow \overline{\mathbb{R}}$ defined by $P_{f}(x, t)=$ $t f(x / t)$ is convex. (P_{f} is known as the perspective of f.)
4. Partial minimization: If $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is convex, then $f(x)=\inf _{y} g(x, y)$ is convex on \mathbb{R}^{n}.

EXERCISE: Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(x)=$ sum of k largest components of x, is a convex function.
EXERCISE: Show that $f: \mathbf{S}^{n} \rightarrow \mathbb{R}, f(X)=\lambda_{\max }(X)$ (largest eigenvalue of the real symmetric matrix X) is convex.
EXERCISE: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined on the real line. For $a \neq b$, let $f[a, b]=\frac{f(b)-f(a)}{b-a}$ be the first order finite difference, and for a, b, c distinct, let $f[a, b, c]=(f[a, b]-f[b, c]) /(a-c)$ be the second order finite differences. Show that f is convex if, and only if, $f[a, b, c] \geq 0$ for all $a, b, c \in \operatorname{dom} f$.

Differentiable functions A function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is differentiable at $x \in \operatorname{int} \operatorname{dom}(f)$ if there is a vector, denoted $\nabla f(x)$ and called the gradient of f at x, s.t.

$$
\begin{equation*}
f(x+h)=f(x)+\langle\nabla f(x), h\rangle+o(\|h\|), \quad(h \rightarrow 0) . \tag{2}
\end{equation*}
$$

Because we are using the Euclidean inner product $\langle u, v\rangle=\sum_{i=1}^{n} u_{i} v_{i}$, we have

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right] .
$$

- If f is convex and differentiable at x, then

$$
\begin{equation*}
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle \quad \forall y \in \mathbb{R}^{n} . \tag{3}
\end{equation*}
$$

Note that this is a global inequality, holding for all $y \in \mathbb{R}^{n}$.

- As such, if $\nabla f(x)=0$, then $f(y) \geq f(x)$ for all $y \in \mathbb{R}^{n}$, and x is a global minimum of f.
- If $\operatorname{dom}(f)$ is open and f is differentiable everywhere on its domain, then inequality (3) is a sufficient condition for convexity.

Second derivatives If a function $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is twice continuously differentiable around x then

$$
f(x+h)=f(x)+\langle\nabla f(x), h\rangle+\frac{1}{2}\left\langle h, \nabla^{2} f(x) h\right\rangle+o\left(\|h\|^{2}\right), \quad(h \rightarrow 0) .
$$

for some $n \times n$ symmetric matrix $\nabla^{2} f(x)$, called the Hessian of f at x. Note that

$$
\left[\nabla^{2} f(x)\right]_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) .
$$

Recall that a $n \times n$ symmetric matrix A is positive semidefinite if $\langle x, A x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$; equivalently, if all the eigenvalues of A are nonnegative. A matrix is positive definite if $\langle x, A x\rangle>0$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$, or equivalently if all the eigenvalues of A are positive.

- If f is convex, and twice continuously differentiable at x, then $\nabla^{2} f(x)$ is positive semidefinite, we write $\nabla^{2} f(x) \succeq 0$.
- Conversely, if $\operatorname{dom}(f)$ is open, f is twice continuously differentiable everywhere in its domain with $\nabla^{2} f(x) \succeq 0$, then f is convex.

