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3 Smoothness and strong convexity

3.1 Dual norms

Recall that if ‖ · ‖ is a norm on Rn, then the dual norm is defined by

‖y‖∗ = sup
‖x‖=1

〈y, x〉 .

In particular we have the generalized Cauchy-Schwarz inequality

〈x, y〉 ≤ ‖x‖‖y‖∗ ∀x, y ∈ Rn.

Exercise: Show that the dual norm of the Euclidean norm ‖x‖2 =
√
〈x, x〉 is the Euclidean norm

itself. More generally show the dual of the p-norm ‖x‖p = (
∑

i |xi|p)1/p is the q norm where
1/p+ 1/q = 1.

3.2 L-smoothness

We say that a differentiable function f : Rn → R is L-smooth with respect to a norm ‖ · ‖, if for
any x, y ∈ int dom(f),

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, (1)

where ‖ · ‖∗ is the dual norm to ‖ · ‖. (We will sometimes omit the reference to the norm, in which
case this means we work with the Euclidean norm.) The following lemma will be important in the
analysis of optimization algorithms.

Lemma 1 (Descent lemma). If f is L-smooth, then for any x ∈ int dom(f) and y ∈ dom(f),

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2. (2)

Remark 1. To appreciate the implication of the inequality above, assume ‖ · ‖ = ‖ · ‖2 is the
Euclidean norm, and consider taking y = x − (1/L)∇f(x), i.e., one step of the gradient method
with step size t = 1/L. Then we get f(y) ≤ f(x) − 1

2L‖∇f(x)‖22 < f(x), i.e., the function value
decreases at each iteration.

Proof of Lemma 1. Let h = y− x and φ(t) = f(x+ th)− (f(x) + t 〈∇f(x), h〉). Then φ is differen-
tiable and φ′(t) = 〈∇f(x+ th)−∇f(x), h〉 ≤ ‖∇f(x+ th)−∇f(x)‖∗‖h‖ ≤ Lt‖h‖2 where we used
the Lipschitz assumption (1). Thus it follows that φ(1) = φ(0) +

∫ 1
0 φ
′(t)dt ≤ L/2‖h‖2 which gives

precisely the desired inequality (2).

A simple way to check L-smoothness, is by analyzing the Hessian matrix. One can show the
following proposition:

Proposition 3.1. Assume f : Rn → R is such that dom(f) is open, and f is twice continuously
differentiable on its domain. Then f is L-smooth if, and only if,

∀u, v ∈ Rn,
〈
∇2f(x)u, v

〉
≤ L‖u‖‖v‖. (3)
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Remark 2. Condition (3) can be equivalently written as ‖∇2f(x)u‖∗ ≤ L‖u‖ for all u ∈ Rn.
Equivalently, this is saying that the (Rn, ‖ ·‖)→ (Rn, ‖ ·‖∗) induced norm of the linear map ∇2f(x)
is at most L.

Proof. ⇐ Let x, y ∈ dom(f). The fundamental theorem of calculus applied to the function t 7→
∇f(x+ th) with h = y − x tells us that ∇f(y)−∇f(x) =

∫ 1
0 ∇

2f(x+ th)hdt. Thus we can write

‖∇f(y)−∇f(x)‖∗ ≤
∫ 1

0
‖∇2f(x+ th)h‖∗dt ≤

∫ 1

0
L‖h‖dt = L‖h‖

as desired.
⇒Assume f is L-smooth. Let u, v be arbitrary vectors, and define ψ(t) = 〈∇f(x+ tu)−∇f(x), v〉.

Then by L-smoothness, ψ(t) ≤ Lt‖u‖‖v‖, and so ψ′(0) = limt→0(ψ(t) − ψ(0))/t ≤ L‖u‖‖v‖. But
ψ′(0) =

〈
∇2f(x)u, v

〉
.

Remark 3. If ‖ · ‖ = ‖ · ‖2 is the Euclidean norm, then condition (3) is equivalent to saying that
the eigenvalues of ∇2f(x) are all in [−L,L].

3.3 Strong convexity

We say that f is m-strongly convex (with respect to the norm ‖ · ‖) if for any x, y ∈ dom(f), and
t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖2. (4)

• If f is m-strongly convex and differentiable at x, then for any y ∈ dom(f) we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2. (5)

(This can be proved simply by subtracting f(x) from both sides of (4), dividing by t, and
letting t→ 0.) The converse is also true, i.e., if dom(f) is open, f is differentiable everywhere
on its domain, and (5) holds for all x, y ∈ dom(f), then f is m-strongly convex. (Exercise)

• If f is twice continuously differentiable on its domain (assumed open), then strong convexity
is equivalent to

〈
∇2f(x)h, h

〉
≥ m‖h‖2 for all x ∈ dom(f) and h ∈ Rn. (Proof left as an

exercise.)

Remark 4. When considering the Euclidean norm, we see that a convex function f is L-smooth
if, and only if, ∇2f(x) � LI, i.e., LI − ∇2f(x) is positive semidefinite (where I is the identity
matrix), i.e., all the eigenvalues of f are ≤ L. Similarly, a function f is m-strongly convex if, and
only if, ∇2f(x) � mI, i.e., all the eigenvalues of ∇2f(x) are ≥ m.

To summarize, if a function f is L-smooth, and m-strongly convex, then we can find, at any
point x ∈ int dom(f) global quadratic lower and upper bounds on f :

f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2︸ ︷︷ ︸

strong convexity

≤ f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2︸ ︷︷ ︸

L-smoothness

. (6)

The ratio κ = L/m can be interpreted as a condition number of f . This quantity will play a
prominent role in the convergence analysis of optimization algorithms for strongly convex functions.
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The inequalities (6) can be expressed more concisely if we introduce the so-called Bregman
divergence of f , defined as the gap between f and its linear approximation:

Df (y|x) = f(y)− (f(x) + 〈∇f(x), y − x〉).

The inequalities above can then be written as:

m

2
‖y − x‖2 ≤ Df (y|x) ≤ L

2
‖y − x‖2.
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