5 Nesterov's fast gradient method

Is the gradient method optimal? Or is there another algorithm that can achieve a faster rate of convergence? We will see that a simple (yet nontrivial!) modification of the gradient method allows us to boost the convergence rate from $O(1 / k)$ to $O\left(1 / k^{2}\right)$ for L-smooth functions. The algorithm is as follows:

Start with $x_{0} \in \mathbb{R}^{n}, \theta_{0}=1, v_{0}=x_{0}$ and iterate for $k=0,1, \ldots$:

$$
\left\{\begin{array}{l}
\text { If } k \geq 1: \text { choose } \theta_{k} \in(0,1) \text { so that } \frac{\left(1-\theta_{k}\right) t_{k}}{\theta_{k}^{2}} \leq \frac{t_{k-1}}{\theta_{k-1}^{2}} \tag{1}\\
y=\left(1-\theta_{k}\right) x_{k}+\theta_{k} v_{k} \\
x_{k+1}=y-t_{k} \nabla f(y) \\
v_{k+1}=x_{k}+\frac{1}{\theta_{k}}\left(x_{k+1}-x_{k}\right)
\end{array}\right.
$$

Figure 1: Iteration rule for the fast gradient method. y is defined as an extrapolation of x_{k} along the direction $x_{k}-x_{k-1}$, namely $y=x_{k}+\beta_{k}\left(x_{k}-x_{k-1}\right)$. We evaluate the gradient of f at y and the new iterate is defined as $y-t_{k} \nabla f(y)$. We also show in this figure the iterates v_{k}. We show them in light gray because they are not "essential" for the algorithm (i.e., they can be eliminated). The only point to note here is that y is a θ-combination of x_{k} and v_{k}; and v_{k+1} is defined in such a way that x_{k+1} is a θ-combination (with the same θ) of x_{k} and v_{k+1}. It is easy to see from the picture that $v_{k+1}-v_{k}$ must be proportional to $\nabla f(y)$.

Some comments on the algorithm:

- The condition on θ_{k} looks complicated; it comes from the analysis of the sequences $\left\{x_{k}, v_{k}\right\}$. We will comment on the choice of θ_{k} later.
- The iterates v_{k} can be eliminated. In this case, the algorithm has only two steps per iteration: $y=x_{k}+\beta_{k}\left(x_{k}-x_{k-1}\right)$ where $\beta_{k}=\theta_{k}\left(\theta_{k-1}^{-1}-1\right)$ and $x_{k+1}=y-t_{k} \nabla f(y)$. See Figure 5 for an illustration.
- Algorithm (1) is very similar to a standard gradient method: the "only" difference is that the gradient is taken at a point y that is an extrapolation of x_{k} along the direction $x_{k}-x_{k-1}$.
- The defining property of v_{k+1} (last line of (1)) is that $x_{k+1}=\left(1-\theta_{k}\right) x_{k}+\theta_{k} v_{k+1}$. See also comment in Figure 5.

We now comment on the θ_{k} 's:

- One can always find $\theta_{k} \in(0,1)$ such that the condition in the first line of the algorithm is always satisfied. In fact one can find a θ_{k} such that we have equality. This is given by $\theta_{k}=\frac{-a+\sqrt{a^{2}+4}}{2}$ where $a^{2}=\theta_{k-1}^{2} t_{k} / t_{k-1}$.
- When $t_{k}=t$ is fixed, one can check that the sequence $\theta_{k}=\frac{2}{k+2}$ satisfies the desired inequality $\frac{1-\theta_{k}}{\theta_{k}^{2}} \leq \frac{1}{\theta_{k-1}^{2}}$ (but it does not satisfy equality)

We are now ready to prove convergence of the algorithm:
Theorem 5.1 (Nesterov). Let f be convex with L-Lipschitz continuous gradient. The iterations of (1) with constant step size $t_{k}=t \in(0,1 / L]$ and with $\theta_{k}=\frac{2}{k+2}$ satisfy

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2}{(k+1)^{2} t}\left\|x_{0}-x^{*}\right\|_{2}^{2}
$$

for all $k \geq 1$.
Proof. We start like with the gradient method. We let $x^{+}=y-t \nabla f(y)$. Then we have:

$$
\begin{align*}
f\left(x^{+}\right) & \leq f(y)+\left\langle\nabla f(y),\left(x^{+}-y\right)\right\rangle+\frac{L}{2}\left\|x^{+}-y\right\|_{2}^{2} \\
& =f(y)-\frac{1}{t}\left\|x^{+}-y\right\|_{2}^{2}(1-L t / 2) \tag{2}\\
& \leq f(y)-1 /(2 t)\left\|x^{+}-y\right\|_{2}^{2}
\end{align*}
$$

where we used that $0<t \leq 1 / L$. By convexity of f we also have, for any $z \in \mathbb{R}^{n}, f(y)-f(z) \leq$ $\langle\nabla f(y), y-z\rangle$. Combining this with (2), we get

$$
\begin{align*}
f\left(x^{+}\right)-f(z) & \leq f(y)-f(z)-(t / 2)\|\nabla f(y)\|_{2}^{2} \\
& \leq\langle\nabla f(y), y-z\rangle-(t / 2)\|\nabla f(y)\|_{2}^{2} \\
& =-(t / 2)\|\nabla f(y)-(1 / t)(y-z)\|_{2}^{2}+\frac{1}{2 t}\|y-z\|_{2}^{2} \tag{3}\\
& =\frac{1}{2 t}\left[-\left\|x^{+}-z\right\|_{2}^{2}+\|y-z\|_{2}^{2}\right] .
\end{align*}
$$

Until now this is the same as for the analysis of the gradient method [In the gradient method we had $y=x_{k}, z=x^{*}$, then we summed the inequality and the terms on the right-hand side telescoped].

What we will do here is that we will evaluate (3) at the points $z=x^{*}$ and $z=x$ and consider the convex combination with weights $\{\theta, 1-\theta\}$. Observe that the RHS of (3) is affine in z (this is apparent from the second line). Thus we get:

$$
f\left(x^{+}\right)-\left(\theta f\left(x^{*}\right)+(1-\theta) f(x)\right) \leq \frac{1}{2 t}\left[\left\|y-\left(\theta x^{*}+(1-\theta) x\right)\right\|_{2}^{2}-\left\|x^{+}-\left(\theta x^{*}+(1-\theta) x\right)\right\|_{2}^{2}\right] .
$$

Now let's recall that $y=(1-\theta) x+\theta v$ (where v stands for v_{k} and v^{+}for v_{k+1}). This implies that the first-term on the RHS of (3) is $\theta^{2}\left\|v-x^{*}\right\|_{2}^{2}$. Also recall that $x^{+}=(1-\theta) x+\theta v^{+}$and so the second-term on the RHS is (3) is $\theta^{2}\left\|v^{+}-x^{*}\right\|_{2}^{2}$. Finally we get [with a slight rewrite of the LHS]

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x^{*}\right)-\left(1-\theta_{k}\right)\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right) \leq \frac{\theta_{k}^{2}}{2 t}\left[\left\|x^{*}-v_{k}\right\|_{2}^{2}-\left\|x^{*}-v_{k+1}\right\|_{2}^{2}\right] . \tag{4}
\end{equation*}
$$

Rearranging to put the iterates $k+1$ on one side of the inequality, and the iterates k on the other side:

$$
\begin{equation*}
\frac{t}{\theta_{k}^{2}}\left(f\left(x_{k+1}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{k+1}\right\|_{2}^{2} \leq \frac{\left(1-\theta_{k}\right) t}{\theta_{k}^{2}}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{k}\right\|_{2}^{2} \tag{5}
\end{equation*}
$$

Now we use the assumption that $\left(1-\theta_{k}\right) / \theta_{k}^{2} \leq 1 /\left(\theta_{k-1}\right)^{2}$ to get:

$$
\begin{equation*}
\frac{t}{\theta_{k}^{2}}\left(f\left(x_{k+1}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{k+1}\right\|_{2}^{2} \leq \frac{t}{\theta_{k-1}^{2}}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{k}\right\|_{2}^{2} \tag{6}
\end{equation*}
$$

Inequality above tells us that the quantity $V_{k}=\frac{t}{\theta_{k-1}^{2}}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{k}\right\|_{2}^{2}$ is nonincreasing with k. Thus we have $V_{k} \leq V_{k-1} \leq \cdots \leq V_{1}$ which gives

$$
\begin{aligned}
\frac{t}{\theta_{k-1}^{2}}\left(f\left(x_{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{k}\right\|_{2}^{2} & \leq \frac{t}{\theta_{0}^{2}}\left(f\left(x_{1}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{1}\right\|_{2}^{2} \\
& \leq \frac{\left(1-\theta_{0}\right) t}{\theta_{0}^{2}}\left(f\left(x_{0}\right)-f\left(x^{*}\right)\right)+\frac{1}{2}\left\|x^{*}-v_{0}\right\|_{2}^{2} \\
& =\frac{1}{2}\left\|x^{*}-x_{0}\right\|_{2}^{2}
\end{aligned}
$$

where the second line follows from (5) with $k=0$, and the last line uses $\theta_{0}=1$ and $v_{0}=x_{0}$. Thus we get $f\left(x_{k}\right)-f^{*} \leq \frac{\theta_{k-1}^{2}}{2 t}\left\|x^{*}-x_{0}\right\|_{2}^{2}$, and with $\theta_{k-1}=\frac{2}{k+1}$ we get the desired rate.

Some remarks on the algorithm:
Descent The fast gradient method is not a descent method, i.e., it is possible that $f\left(x_{k+1}\right)>$ $f\left(x_{k}\right)$ (unlike the gradient method). The convergence analysis proves however that a certain combination of $f\left(x_{k}\right)-f^{*}$ and $\left\|x^{*}-v_{k}\right\|_{2}^{2}$ decreases with k (cf. Equation (6)).

Backtracking line search One can also prove convergence of the algorithm with a backtracking line search, rather than a constant line search. The only requirement on the step size t_{k} is that inequality (2) is satisfied; this is the only thing needed in the convergence proof. The scheme works as follows: Starting with $t_{k}=\hat{t}>0$, keep updating $t_{k}=\beta t_{k}$ with $\beta \in(0,1)$ until condition (2) is satisfied. (Note that the latter condition can be more succintly written as $f\left(x_{k+1}\right) \leq f(y)-$ $\frac{t_{k}}{2}\|\nabla f(y)\|_{2}^{2}$.) Also note that each time t_{k} is updated, one has to recompute θ_{k}, y, and x_{k+1}. In all, the line search at iteration k proceeds as follows:

$$
\begin{aligned}
& \text { Start with } t_{k}=\hat{t} \text {, and compute associated } \theta_{k}, y, x_{k+1} \\
& \text { While } f\left(x_{k+1}\right)>f(y)-\frac{t_{k}}{2}\|\nabla f(y)\|_{2}^{2} \\
& \quad \text { Update } t_{k}=\beta t_{k} \\
& \text { Compute } \theta_{k} \text { such that } \frac{1-\theta_{k}}{\theta_{k}^{2}} t_{k} \leq \frac{t_{k-1}}{\theta_{k-1}^{2}} \\
& \text { Compute } y=\left(1-\theta_{k}\right) x_{k}+\theta_{k} v_{k} \\
& \text { Compute } x_{k+1}=y-t_{k} \nabla f(y)
\end{aligned}
$$

Illustration Consider the function $f(x)=\sum_{i=1}^{N} \log \left(1+e^{a_{i}^{T} x+b_{i}}\right)$ which we considered in the previous lecture. The plot below compares the standard gradient method with the fast gradient method, and we observe that the latter converges faster.

Figure 2: Fast gradient method for logistic regression

Strongly convex case We have seen in Lecture 4 that when the function f is m-strongly convex, the gradient method with step size $t=2 /(m+L)$ converges at a linear rate $\approx\left(1-\frac{1}{\kappa}\right)^{2 k}$ where $\kappa=\frac{L}{m} \geq 1$ is the condition number. What about the fast gradient method? If we know the strong convexity parameter $m>0$, algorithm (1) can be slightly modified to incorporate this knowledge. We do not give the general algorithm (as we did in Equation (1)), but only an important special case, where $t_{k}=1 / L$ and a specific choice of θ_{k}. The algorithm reads:

$$
\left\{\begin{array}{l}
y=x_{k}+\frac{1-\sqrt{m / L}}{1+\sqrt{m / L}}\left(x_{k}-x_{k-1}\right) \tag{7}\\
x_{k+1}=y-(1 / L) \nabla f(y) .
\end{array}\right.
$$

One can prove that if f is m-strongly convex and ∇f is L-Lipschitz, then the convergence rate of (7) is $\approx(1-\sqrt{1 / \kappa})^{2 k}$. This means that we reach accuracy ϵ in at most $O\left(\sqrt{\frac{L}{m}} \log (1 / \epsilon)\right)$ iterations. This can be much smaller than the $O\left(\frac{L}{m} \log (1 / \epsilon)\right)$ iterations of the gradient method [cf. Lecture 4].

One drawback of the algorithm (7) is that it relies on the knowledge of m which can sometimes be difficult to estimate. (Note that the gradient method does not require knowledge of m. In lecture 3 we assumed $t_{k}=2 /(m+L)$ but one can easily see that $t_{k}=1 / L$ also gives a linear convergence rate of the form $(1-1 / \kappa)^{k}$.) Several improvements and adaptations that avoid knowledge of m have been proposed recently in the literature, see e.g., [OC15, Section 2.1].

References

[OC15] Brendan O'Donoghue and Emmanuel Candès. Adaptive restart for accelerated gradient schemes. Foundations of computational mathematics, 15(3):715-732, 2015. 4

