Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

6 Lower complexity bounds

Is the fast gradient of Nesterov optimal, or can we find an even faster algorithm? It turns that
O(1/k?) is the best rate one can get for minimization of L-smooth convex functions, assuming we
only have access to gradients of f.

A first-order algorithm is one that has access to function values f(z) and gradients V f(z). The
complexity of such an algorithm is the number of queries it makes. We consider here algorithms
that satisfy the following assumption: the k’th iterate/query point x of the algorithm satisfies:

xp € o +span{V f(zo),Vf(x1),...,Vf(xxg_1)}. (1)

Clearly the gradient and fast gradient methods satisfy this assumption.

Define 1, = {f : R™ — R convex with L-Lipschitz gradient}. We want to understand how well
can first-order algorithms behave on functions in /7. The next theorem, due to Nesterov, shows
that O(1/k?) is the best rate one can hope for.

Theorem 6.1 (Nesterov). Fiz L > 0 and an integer k > 1. For any algorithm satisfying (1), there
is a function f € Fr onn =2k + 1 variables such that after k steps of the algorithm
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and 1
g, — 2*[|3 > gllwo —z*|3. (3)

Proof. Let n =2k + 1 and consider the function f : R™ — R as follows
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Let also, for i = 1,....,n V; = {x € R" : 2,41 = -+ = x, = 0}. Then we have the following
properties about f:
(i) ferFL
(ii) The minimum of f is attained at z* = (nLH, e %H, ﬁ) and the optimal value is f* =
—%niﬂ. More generally the minimum of f on the subspace V; is —%i%l, attained at the point
j 2 1
<ﬁﬁ?00) eV

(iii) If z € V; for i < n, then Vf(x) € Viq1.

We leave it to the reader to check these properties.
Assume without loss of generality that the first query point of the algorithm is xg = 0 (if it is
not we simply consider the function f(x) = f(x — z¢)). By property (iii) of f, and by assumption



(1) on the algorithm this means that the k’th query point xj, of the algorithm must belong to V.

Thus this means that
L k
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Now using the fact that n = 2k + 1 and f* = —én—ﬂ we get
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Also note that ||z — 2*[|3 = ||z*||3 = n+1 e D= P bl < il thus
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as desired.

We now prove (3). Since x = (7,...,7,0,...,0) then xp — x* = (?,...,?,—Z—;’f,...,—n%_l
which implies ||z), — *[|3 > (n%)? > lk i2. Now using the fact that n = 2k +1 we get ||z, —2*||3 >
% (2k + 3). Combining with ||zg — z*[|3 < % we get ||z — %13 > $|lzo — 2*|3 as desired. O

Strongly convex functions: Let Fp, 1 = {f : R® = R m-strongly convex and L-smooth}. One
can show in a similar way as the proof above, that for any first-order algorithm A that runs for k
iterations, there is a function f € Fy, 1 such that the £’th iterate of A on f satisfies:

2k
fa =1 zm (VD) oo —atlP

This means that to reach accuracy €, one needs at least ~ \/L/mlog(1/e) iterations.
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