6 Lower complexity bounds

Is the fast gradient of Nesterov optimal, or can we find an even faster algorithm? It turns that $O(1/k^2)$ is the best rate one can get for minimization of L-smooth convex functions, assuming we only have access to gradients of f.

A first-order algorithm is one that has access to function values f(x) and gradients $\nabla f(x)$. The complexity of such an algorithm is the number of queries it makes. We consider here algorithms that satisfy the following assumption: the k'th iterate/query point x_k of the algorithm satisfies:

$$x_k \in x_0 + \operatorname{span} \left\{ \nabla f(x_0), \nabla f(x_1), \dots, \nabla f(x_{k-1}) \right\}.$$
(1)

Clearly the gradient and fast gradient methods satisfy this assumption.

Define $\mathcal{F}_L = \{f : \mathbb{R}^n \to \mathbb{R} \text{ convex with } L\text{-Lipschitz gradient}\}$. We want to understand how well can first-order algorithms behave on functions in \mathcal{F}_L . The next theorem, due to Nesterov, shows that $O(1/k^2)$ is the best rate one can hope for.

Theorem 6.1 (Nesterov). Fix L > 0 and an integer $k \ge 1$. For any algorithm satisfying (1), there is a function $f \in \mathcal{F}_L$ on n = 2k + 1 variables such that after k steps of the algorithm

$$f(x_k) - f^* \ge \frac{3}{32} \frac{L \|x_0 - x^*\|_2^2}{(k+1)^2}$$
(2)

and

$$||x_k - x^*||_2^2 \ge \frac{1}{8} ||x_0 - x^*||_2^2.$$
(3)

Proof. Let n = 2k + 1 and consider the function $f : \mathbb{R}^n \to \mathbb{R}$ as follows

$$f(x) = \frac{L}{8} \left(x_n^2 + \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2 + x_1^2 - 2x_1 \right).$$
(4)

Let also, for i = 1, ..., n $V_i = \{x \in \mathbb{R}^n : x_{i+1} = \cdots = x_n = 0\}$. Then we have the following properties about f:

- (i) $f \in \mathcal{F}_L$
- (ii) The minimum of f is attained at $x^* = \left(\frac{n}{n+1}, \dots, \frac{2}{n+1}, \frac{1}{n+1}\right)$ and the optimal value is $f^* = -\frac{L}{8}\frac{n}{n+1}$. More generally the minimum of f on the subspace V_i is $-\frac{L}{8}\frac{i}{i+1}$, attained at the point $\left(\frac{i}{i+1}, \dots, \frac{2}{i+1}, \frac{1}{i+1}, 0, \dots, 0\right) \in V_i$.
- (iii) If $x \in V_i$ for i < n, then $\nabla f(x) \in V_{i+1}$.

We leave it to the reader to check these properties.

Assume without loss of generality that the first query point of the algorithm is $x_0 = 0$ (if it is not we simply consider the function $\tilde{f}(x) = f(x - x_0)$). By property (iii) of f, and by assumption

(1) on the algorithm this means that the k'th query point x_k of the algorithm must belong to V_k . Thus this means that

$$f(x_k) \ge \min_{x \in V_k} f(x) = -\frac{L}{8} \frac{k}{k+1}$$

Now using the fact that n = 2k + 1 and $f^* = -\frac{L}{8}\frac{n}{n+1}$ we get

$$f(x_k) - f^* \ge \frac{L}{8} \left(\frac{2k+1}{2k+2} - \frac{k}{k+1} \right) = \frac{L}{8} \frac{1}{2k+2}$$

Also note that $||x_0 - x^*||_2^2 = ||x^*||_2^2 = \frac{1}{(n+1)^2} \sum_{i=1}^{n-1} i^2 = \frac{n}{n+1} \frac{2n+1}{6} \le \frac{n+1}{3}$, thus

$$\frac{f(x_k) - f^*}{\|x_0 - x^*\|_2^2} \ge \frac{L}{8} \frac{1}{2k+2} \frac{3}{2k+2} = \frac{3L}{32} \frac{1}{(k+1)^2}$$

as desired.

We now prove (3). Since $x_k = (?, ..., ?, 0, ..., 0)$ then $x_k - x^* = \left(?, ..., ?, -\frac{n-k}{n+1}, ..., -\frac{1}{n+1}\right)$ which implies $\|x_k - x^*\|_2^2 \ge \frac{1}{(n+1)^2} \sum_{i=1}^{n-k} i^2$. Now using the fact that n = 2k+1 we get $\|x_k - x^*\|_2^2 \ge \frac{1}{24}(2k+3)$. Combining with $\|x_0 - x^*\|_2^2 \le \frac{2k+2}{3}$ we get $\|x_k - x^*\|_2^2 \ge \frac{1}{8}\|x_0 - x^*\|_2^2$ as desired. \Box

Strongly convex functions: Let $\mathcal{F}_{m,L} = \{f : \mathbb{R}^n \to \mathbb{R} \text{ m-strongly convex and } L\text{-smooth}\}$. One can show in a similar way as the proof above, that for any first-order algorithm \mathcal{A} that runs for k iterations, there is a function $f \in \mathcal{F}_{m,L}$ such that the k'th iterate of \mathcal{A} on f satisfies:

$$f(x_k) - f^* \gtrsim m \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x_0 - x^*\|^2.$$

This means that to reach accuracy ϵ , one needs at least $\approx \sqrt{L/m} \log(1/\epsilon)$ iterations.