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6 Lower complexity bounds

Is the fast gradient of Nesterov optimal, or can we find an even faster algorithm? It turns that
O(1/k2) is the best rate one can get for minimization of L-smooth convex functions, assuming we
only have access to gradients of f .

A first-order algorithm is one that has access to function values f(x) and gradients ∇f(x). The
complexity of such an algorithm is the number of queries it makes. We consider here algorithms
that satisfy the following assumption: the k’th iterate/query point xk of the algorithm satisfies:

xk ∈ x0 + span {∇f(x0),∇f(x1), . . . ,∇f(xk−1)} . (1)

Clearly the gradient and fast gradient methods satisfy this assumption.
Define FL = {f : Rn → R convex with L-Lipschitz gradient}. We want to understand how well

can first-order algorithms behave on functions in FL. The next theorem, due to Nesterov, shows
that O(1/k2) is the best rate one can hope for.

Theorem 6.1 (Nesterov). Fix L > 0 and an integer k ≥ 1. For any algorithm satisfying (1), there
is a function f ∈ FL on n = 2k + 1 variables such that after k steps of the algorithm

f(xk)− f∗ ≥ 3

32

L‖x0 − x∗‖22
(k + 1)2

(2)

and

‖xk − x∗‖22 ≥
1

8
‖x0 − x∗‖22. (3)

Proof. Let n = 2k + 1 and consider the function f : Rn → R as follows

f(x) =
L

8

(
x2n +

n−1∑
i=1

(xi+1 − xi)2 + x21 − 2x1

)
. (4)

Let also, for i = 1, . . . , n Vi = {x ∈ Rn : xi+1 = · · · = xn = 0}. Then we have the following
properties about f :

(i) f ∈ FL

(ii) The minimum of f is attained at x∗ =
(

n
n+1 , . . . ,

2
n+1 ,

1
n+1

)
and the optimal value is f∗ =

−L
8

n
n+1 . More generally the minimum of f on the subspace Vi is −L

8
i

i+1 , attained at the point(
i

i+1 , . . . ,
2

i+1 ,
1

i+1 , 0, . . . , 0
)
∈ Vi.

(iii) If x ∈ Vi for i < n, then ∇f(x) ∈ Vi+1.

We leave it to the reader to check these properties.
Assume without loss of generality that the first query point of the algorithm is x0 = 0 (if it is

not we simply consider the function f̃(x) = f(x− x0)). By property (iii) of f , and by assumption
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(1) on the algorithm this means that the k’th query point xk of the algorithm must belong to Vk.
Thus this means that

f(xk) ≥ min
x∈Vk

f(x) = −L
8

k

k + 1
.

Now using the fact that n = 2k + 1 and f∗ = −L
8

n
n+1 we get

f(xk)− f∗ ≥ L

8

(
2k + 1

2k + 2
− k

k + 1

)
=
L

8

1

2k + 2
.

Also note that ‖x0 − x∗‖22 = ‖x∗‖22 = 1
(n+1)2

∑n−1
i=1 i

2 = n
n+1

2n+1
6 ≤ n+1

3 , thus

f(xk)− f∗

‖x0 − x∗‖22
≥ L

8

1

2k + 2

3

2k + 2
=

3L

32

1

(k + 1)2

as desired.
We now prove (3). Since xk = (?, . . . , ?, 0, . . . , 0) then xk − x∗ =

(
?, . . . , ?,−n−k

n+1 , . . . ,−
1

n+1

)
which implies ‖xk−x∗‖22 ≥ 1

(n+1)2
∑n−k

i=1 i
2. Now using the fact that n = 2k+1 we get ‖xk−x∗‖22 ≥

1
24(2k + 3). Combining with ‖x0 − x∗‖22 ≤ 2k+2

3 we get ‖xk − x∗‖22 ≥ 1
8‖x0 − x

∗‖22 as desired.

Strongly convex functions: Let Fm,L = {f : Rn → R m-strongly convex and L-smooth}. One
can show in a similar way as the proof above, that for any first-order algorithm A that runs for k
iterations, there is a function f ∈ Fm,L such that the k’th iterate of A on f satisfies:

f(xk)− f∗ ' m

(√
κ− 1√
κ+ 1

)2k

‖x0 − x∗‖2.

This means that to reach accuracy ε, one needs at least ≈
√
L/m log(1/ε) iterations.
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