6 Lower complexity bounds

Is the fast gradient of Nesterov optimal, or can we find an even faster algorithm? It turns that $O\left(1 / k^{2}\right)$ is the best rate one can get for minimization of L-smooth convex functions, assuming we only have access to gradients of f.

A first-order algorithm is one that has access to function values $f(x)$ and gradients $\nabla f(x)$. The complexity of such an algorithm is the number of queries it makes. We consider here algorithms that satisfy the following assumption: the k 'th iterate/query point x_{k} of the algorithm satisfies:

$$
\begin{equation*}
x_{k} \in x_{0}+\operatorname{span}\left\{\nabla f\left(x_{0}\right), \nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{k-1}\right)\right\} . \tag{1}
\end{equation*}
$$

Clearly the gradient and fast gradient methods satisfy this assumption.
Define $\mathcal{F}_{L}=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ convex with L-Lipschitz gradient $\}$. We want to understand how well can first-order algorithms behave on functions in \mathcal{F}_{L}. The next theorem, due to Nesterov, shows that $O\left(1 / k^{2}\right)$ is the best rate one can hope for.

Theorem 6.1 (Nesterov). Fix $L>0$ and an integer $k \geq 1$. For any algorithm satisfying (1), there is a function $f \in \mathcal{F}_{L}$ on $n=2 k+1$ variables such that after k steps of the algorithm

$$
\begin{equation*}
f\left(x_{k}\right)-f^{*} \geq \frac{3}{32} \frac{L\left\|x_{0}-x^{*}\right\|_{2}^{2}}{(k+1)^{2}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{k}-x^{*}\right\|_{2}^{2} \geq \frac{1}{8}\left\|x_{0}-x^{*}\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

Proof. Let $n=2 k+1$ and consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as follows

$$
\begin{equation*}
f(x)=\frac{L}{8}\left(x_{n}^{2}+\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)^{2}+x_{1}^{2}-2 x_{1}\right) . \tag{4}
\end{equation*}
$$

Let also, for $i=1, \ldots, n V_{i}=\left\{x \in \mathbb{R}^{n}: x_{i+1}=\cdots=x_{n}=0\right\}$. Then we have the following properties about f :
(i) $f \in \mathcal{F}_{L}$
(ii) The minimum of f is attained at $x^{*}=\left(\frac{n}{n+1}, \ldots, \frac{2}{n+1}, \frac{1}{n+1}\right)$ and the optimal value is $f^{*}=$ $-\frac{L}{8} \frac{n}{n+1}$. More generally the minimum of f on the subspace V_{i} is $-\frac{L}{8} \frac{i}{i+1}$, attained at the point $\left(\frac{i}{i+1}, \ldots, \frac{2}{i+1}, \frac{1}{i+1}, 0, \ldots, 0\right) \in V_{i}$.
(iii) If $x \in V_{i}$ for $i<n$, then $\nabla f(x) \in V_{i+1}$.

We leave it to the reader to check these properties.
Assume without loss of generality that the first query point of the algorithm is $x_{0}=0$ (if it is not we simply consider the function $\left.\tilde{f}(x)=f\left(x-x_{0}\right)\right)$. By property (iii) of f, and by assumption
(1) on the algorithm this means that the k 'th query point x_{k} of the algorithm must belong to V_{k}. Thus this means that

$$
f\left(x_{k}\right) \geq \min _{x \in V_{k}} f(x)=-\frac{L}{8} \frac{k}{k+1} .
$$

Now using the fact that $n=2 k+1$ and $f^{*}=-\frac{L}{8} \frac{n}{n+1}$ we get

$$
f\left(x_{k}\right)-f^{*} \geq \frac{L}{8}\left(\frac{2 k+1}{2 k+2}-\frac{k}{k+1}\right)=\frac{L}{8} \frac{1}{2 k+2} .
$$

Also note that $\left\|x_{0}-x^{*}\right\|_{2}^{2}=\left\|x^{*}\right\|_{2}^{2}=\frac{1}{(n+1)^{2}} \sum_{i=1}^{n-1} i^{2}=\frac{n}{n+1} \frac{2 n+1}{6} \leq \frac{n+1}{3}$, thus

$$
\frac{f\left(x_{k}\right)-f^{*}}{\left\|x_{0}-x^{*}\right\|_{2}^{2}} \geq \frac{L}{8} \frac{1}{2 k+2} \frac{3}{2 k+2}=\frac{3 L}{32} \frac{1}{(k+1)^{2}}
$$

as desired.
We now prove (3). Since $x_{k}=(?, \ldots, ?, 0, \ldots, 0)$ then $x_{k}-x^{*}=\left(?, \ldots, ?,-\frac{n-k}{n+1}, \ldots,-\frac{1}{n+1}\right)$ which implies $\left\|x_{k}-x^{*}\right\|_{2}^{2} \geq \frac{1}{(n+1)^{2}} \sum_{i=1}^{n-k} i^{2}$. Now using the fact that $n=2 k+1$ we get $\left\|x_{k}-x^{*}\right\|_{2}^{2} \geq$ $\frac{1}{24}(2 k+3)$. Combining with $\left\|x_{0}-x^{*}\right\|_{2}^{2} \leq \frac{2 k+2}{3}$ we get $\left\|x_{k}-x^{*}\right\|_{2}^{2} \geq \frac{1}{8}\left\|x_{0}-x^{*}\right\|_{2}^{2}$ as desired.

Strongly convex functions: Let $\mathcal{F}_{m, L}=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} m\right.$-strongly convex and L-smooth $\}$. One can show in a similar way as the proof above, that for any first-order algorithm \mathcal{A} that runs for k iterations, there is a function $f \in \mathcal{F}_{m, L}$ such that the k 'th iterate of \mathcal{A} on f satisfies:

$$
f\left(x_{k}\right)-f^{*} \gtrsim m\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 k}\left\|x_{0}-x^{*}\right\|^{2} .
$$

This means that to reach accuracy ϵ, one needs at least $\approx \sqrt{L / m} \log (1 / \epsilon)$ iterations.

