
Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

7 Subgradients

Many optimization problems that arise in practice involve nonsmooth functions, such as ‖x‖1, ‖x‖∞,
or in general max{f1(x), . . . , fm(x)}. In this lecture we give a brief overview of the tools from convex
analysis needed to study such optimization problems. The main concept we study in this lecture
is that of a subgradient.

Definition 7.1. Let f : Rn → R and x ∈ dom(f). We say that g is a subgradient of f at x if for
any y ∈ Rn,

f(y) ≥ f(x) + 〈g, y − x〉 .

The set of all subgradients of f at x is denoted ∂f(x), and is called the subdifferential of f at x.

Remark that x∗ is a minimizer of f if, and only if, 0 ∈ ∂f(x).
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Figure 1: Subgradients of a convex function.

Clearly if f is convex and differentiable at x, then ∇f(x) is a subgradient of f at x. The theorem
below shows that subgradients always exist for convex functions, even if f is not differentiable.

Theorem 7.1. Let f : Rn → R be convex. Then
(i) ∂f(x) is nonempty for all x ∈ int dom(f)
(ii) ∂f(x) is closed and convex for all x. For x ∈ int dom(f), ∂f(x) is bounded.
(iii) ∂f(x) is a singleton if, and only if, f is differentiable at x.

Proof. (i) We apply the supporting hyperplane theorem to

epi(f) = {(x, t) ∈ Rn × R : f(x) ≤ t} ⊂ Rn+1.

Since (x, f(x)) ∈ bd epi(f) [here bdC = clC\intC is the boundary of C] we can find a supporting
hyperplane, i.e., a vector a = (a1, a2) ∈ Rn × R and a scalar b such that

〈
a1, x

〉
+ a2f(x) = b and〈

a1, y
〉

+ a2t ≥ b for all (y, t) ∈ epi(f). Since t can be made arbitrarily large, it must be that
a2 ≥ 0. Since x ∈ int dom(f), a2 6= 0 (if a2 = 0 then we get a supporting hyperplane to dom(f)
at x). Dividing by a2 we can assume a2 = 1, so that

〈
a1, x

〉
+ f(x) = b and

〈
a1, y

〉
+ f(y) ≥ b for

all y ∈ dom(f), i.e., f(y) ≥ f(x) + 〈g, y − x〉 where g = −a1, i.e., g ∈ ∂f(x).
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(ii) ∂f(x) = {g ∈ Rn : f(y) ≥ f(x) + 〈g, y − x〉} is an intersection of closed halfspaces and so
is closed and convex. If x ∈ int dom(f), then for some ε > 0, B(x, ε) ⊂ dom(f). If g ∈ ∂f(x),
then by letting h = εg/‖g‖2 we have f(x + h) ≥ f(x) + 〈g, h〉 = f(x) + ε‖g‖2 which implies that
‖g‖2 ≤ 1

ε maxy∈B(x,ε)(f(y)− f(x)) <∞.
(iii) If f is differentiable at x, then we know from the results seen in Lecture 2 that ∇f(x) ∈

∂f(x). Also if g ∈ ∂f(x) then for any direction h we have

f(x) + t 〈∇f(x), h〉+ o(t) = f(x+ th) ≥ f(x) + t 〈g, h〉 .

Simplifying, this yields 〈∇f(x)− g, h〉 ≥ 0. This has to hold for all h, and so necessarily g = ∇f(x).
We have thus shown that if f is differentiable at x, then ∂f(x) = {∇f(x)}.

We omit the proof of the converse here (see Exercise sheet 2).

Example: normal cones Let C ⊂ Rn be a closed convex set, and let

IC(x) =

{
0 if x ∈ C
+∞ else

be its indicator function. What is ∂IC(x) for x ∈ C? By definition, we have g ∈ ∂IC(x) if, and
only if, 0 ≥ 〈g, y − x〉 for all y ∈ C. If x ∈ intC, then clearly this implies that g = 0. However,
this is not the case if g ∈ C \ intC. In fact, the set ∂IC(x) = {g : 〈g, x〉 ≥ 〈g, y〉 ∀y ∈ C} is known
as the normal cone of C at x, and denoted NC(x).

NC(x)

x

C

Figure 2: Normal cone

7.1 Subgradient calculus

If f : Rn → R is a differentiable function, and h(x) = f(Ax) where A ∈ Rn×m, then it is immediate
to verify that ∇h(x) = A∗∇f(Ax), where A∗ is the adjoint (transpose) of A. Also if f1, f2 are
two differentiable functions, then ∇(f1 + f2)(x) = ∇f1(x) +∇f2(x). These relations also hold in
general for the subgradient of convex functions; however the proof is not immediate and relies on
duality theory.

Theorem 7.2. Let f : Rn → R be a convex function.
(i) If h(x) = f(Ax), where A ∈ Rn×m, such that1 im(A) ∩ int dom(f) 6= ∅, then ∂h(x) =

A∗∂f(Ax) for all x.
(ii) If f1, f2 are two convex functions, such that2 int dom f1 ∩ int dom f2 6= ∅, then ∂(f1 +

f2)(x) = ∂f1(x) +∂f2(x) for all x, where the right-hand side is the Minkowski sum of sets A+B =
{a+ b : a ∈ A, b ∈ B}.

1If f is polyhedral (i.e., epi(f) is a convex set defined using a finite number of linear inequalities), this assumption
can be relaxed to im(A) ∩ dom(f) 6= ∅.

2If f1 is polyhedral (i.e., epi(f1) is a convex set defined using a finite number of linear inequalities), this assumption
can be relaxed to dom f1 ∩ int dom f2 6= ∅. If f2 is also polyhedral, then we just need dom f1 ∩ dom f2 6= ∅.

2



(iii) Let (fα)α∈A be a finite collection of convex functions, and let f(x) = maxα∈A fα(x). Then
for any x ∈ int dom f ,

∂f(x) = conv∪α∈A(x)∂fα(x). (1)

where A(x) = {α ∈ A : fα(x) = f(x)}, and where conv denotes the convex hull.
More generally, (1) holds if A is a compact set, and fα(x) depends continuously on α.

Proof. (i) The inclusion ⊃ is easy to verify: If g ∈ ∂f(Ax), then for any y we have

h(y) = f(Ay) ≥ f(Ax) + 〈g,Ay −Ax〉 = f(Ax) + 〈A∗g, y − x〉 = h(x) + 〈A∗g, y − x〉

which shows that A∗g ∈ ∂h(x). The reverse inclusion ⊆ is omitted here (see Exercise sheet 2 for a
special case, and see [Roc15, Theorem 23.9] for the general case).

(ii) Let F : R2n → R defined by F (x1, x2) = f1(x1) + f2(x2). It easy to check that ∂F (x1, x2) =
∂f1(x1)× ∂f2(x2). Let A : Rn → R2n be the linear map Ax = (x, x) whose adjoint is A∗(x1, x2) =
x1 + x2. Then f(x) = F (x, x) = F (Ax) and so, by (i), ∂f(x) = A∗∂F (Ax) = ∂f1(x) + ∂f2(x).

(iii) The inclusion ⊃ is easy to check. We omit the proof of the reverse inclusion. (See [HUL13,
VI.4.4, p.266], see also Exercise sheet 2 for a special case).

For more on subgradients, and subdifferentials, see [SB18].
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