8 Subgradient method

In this lecture we look at the problem of minimizing a general nonsmooth convex function $f(x)$.
Subgradient method The subgradient method to minimize $f(x)$ works as follows. Choose $x_{0} \in \mathbb{R}^{n}$ and iterate, for $k \geq 0$:

$$
x_{k+1}=x_{k}-t_{k} g_{k}
$$

where $g_{k} \in \partial f\left(x_{k}\right)$ is a subgradient of f at x_{k} and $t_{k}>0$ is the step size.
Note: A negative subgradient is not necessarily a descent direction, i.e., it is possible that $f(x-t g)>f(x)$ for all $t>0$ (small enough). For example $f(x)=|x|, x=0$ and $g=-1 \in \partial f(0)$.

Convergence analysis of subgradient method:

$$
\begin{align*}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} & =\left\|x_{k}-t_{k} g_{k}-x^{*}\right\|_{2}^{2} \\
& =\left\|x_{k}-x^{*}\right\|_{2}^{2}-2 t_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle+t_{k}^{2}\left\|g_{k}\right\|_{2}^{2} \tag{1}\\
& \leq\left\|x_{k}-x^{*}\right\|_{2}^{2}+t_{k}^{2}\left\|g_{k}\right\|_{2}^{2}+2 t_{k}\left(f^{*}-f\left(x_{k}\right)\right)
\end{align*}
$$

where in the last line we used the fact that $g_{k} \in \partial f\left(x_{k}\right)$. Applying this inequality recursively to $\left\|x_{k}-x^{*}\right\|_{2}^{2}$, we get at the end:

$$
\begin{equation*}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} \leq\left\|x_{0}-x^{*}\right\|_{2}^{2}+\sum_{i=0}^{k} t_{i}^{2}\left\|g_{i}\right\|_{2}^{2}+2 \sum_{i=0}^{k} t_{i}\left(f^{*}-f\left(x_{i}\right)\right) \tag{2}
\end{equation*}
$$

which after rearranging, and using $\left\|x_{k+1}-x^{*}\right\|_{2}^{2} \geq 0$, gives us

$$
\sum_{i=0}^{k} t_{i}\left(f\left(x_{i}\right)-f^{*}\right) \leq \frac{\left\|x_{0}-x^{*}\right\|_{2}^{2}}{2}+\frac{1}{2} \sum_{i=0}^{k} t_{i}^{2}\left\|g_{i}\right\|_{2}^{2}
$$

Let $f_{\text {best }, k}=\min \left\{f\left(x_{0}\right), \ldots, f\left(x_{k}\right)\right\}$. Since $t_{i} \geq 0$ we get

$$
\begin{align*}
f_{\text {best }, k}-f^{*} \leq \frac{1}{\sum t_{i}} \sum_{i=0}^{k} t_{i}\left(f\left(x_{i}\right)-f^{*}\right) & \leq \frac{\left\|x_{0}-x^{*}\right\|_{2}^{2}}{2 \sum_{i=0}^{k} t_{i}}+\frac{\sum_{i=0}^{k} t_{i}^{2}\left\|g_{i}\right\|_{2}^{2}}{2 \sum_{i=0}^{k} t_{i}} \tag{3}\\
& \leq \frac{\left\|x_{0}-x^{*}\right\|_{2}}{2 \sum_{i=0}^{k} t_{i}}+\frac{G^{2} \sum_{i=0}^{k} t_{i}^{2}}{2 \sum_{i=0}^{k} t_{i}} .
\end{align*}
$$

where in the last equation we assumed that f is G-Lipschitz, so that $\left\|g_{i}\right\|_{2} \leq G$ (see Exercise sheet $2)$.

- Constant step size: If $t_{k}=t$ and f is G-Lipschitz then we get

$$
\begin{equation*}
f_{\text {best }, k}-f^{*} \leq \frac{\left\|x_{0}-x^{*}\right\|_{2}^{2}}{2(k+1) t}+\frac{G^{2} t}{2} \tag{4}
\end{equation*}
$$

In this case we do not guarantee convergence: we only guarantee that $f_{\text {best }, k}$ will be at most $G^{2} t / 2$ sub-optimal, in the limit $k \rightarrow \infty$.

Assume that k is fixed a priori (i.e., we have a certain number of iterations that we are going to run). What is the choice of t that minimizes the right-hand side of (4)? The choice of t is the one that will make the two terms equal, namely $\left\|x_{0}-x^{*}\right\|_{2}^{2} /(k+1)=G^{2} t^{2}$, i.e., $t=\left\|x_{0}-x^{*}\right\|_{2} /(G \sqrt{k+1})$ and the corresponding bound we get with this choice of t is

$$
t=\frac{\left\|x_{0}-x^{*}\right\|_{2}}{G \sqrt{k+1}} \Rightarrow f_{\text {best }, k}-f^{*} \leq \frac{G\left\|x_{0}-x^{*}\right\|_{2}}{\sqrt{k+1}} .
$$

- Diminishing step size: consider the choice $t_{i} \sim 1 / \sqrt{i}$. Then $\sum_{0}^{k} t_{i} \approx \sqrt{k}, \sum_{0}^{k} t_{i}^{2} \approx \ln (k)$, and so we get a convergence like $\ln (k) / \sqrt{k}$. In fact, one can get rid of the log term by recursing the inequality (1) only up to iterate $k / 2$ (instead of all the way back to the first iterate), and use the fact that $\sum_{k / 2}^{k} 1 / i \leq$ constant.

Illustration The figure below shows the subgradient method applied to the problem of minimizing the nonsmooth function $f(x)=\|A x-b\|_{1}$ where $A \in \mathbb{R}^{m \times n}$ with $m>n$, and $b \in \mathbb{R}^{m}$. We see that with a constant step size, the method does not converge to f^{*}, but only to a neighborhood of the optimal value.

Optimality of subgradient method One can show that the convergence rate of $1 / \sqrt{k}$ is the best possible one can get on the class of nonsmooth convex Lipschitz functions. More precisely, fix k, G, and $R>0$. For any algorithm where the k 'th iterate satisfies

$$
x_{k} \in x_{0}+\operatorname{span}\left\{g_{0}, \ldots, g_{k-1}\right\}
$$

where $g_{i} \in \partial f\left(x_{i}\right)$ and x_{0} is the starting point, there is a convex function f that is G-Lipschitz on $\left\{x:\left\|x-x_{0}\right\|_{2} \leq R\right\}$ such that after k iterations of the algorithm we have

$$
f_{\text {best }, k}-f^{*} \gtrsim \frac{G R}{\sqrt{k+1}}
$$

See Exercise sheet 2 for a proof.

