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9 Proximal mapping

The proximal mapping is a “functional” generalization of the projection mapping. Given a convex
function h : Rn → R, the proximal mapping associated to f is

proxh(y) = argmin
x∈Rn

{
h(x) +

1

2
‖x− y‖22

}
. (1)

Clearly the proximal operator of the indicator function IC of a closed convex set is precisely the
projection operator.

The next proposition guarantees that proxh is well-defined under mild conditions on f . A
function h is lower-semicontinuous (lsc) if h(x) ≤ lim infi→∞ f(xi) for any sequence (xi) converging
to x.

EXERCISE: Let h : Rn → R. Prove that the following are equivalent: (i) h is lower-
semicontinuous, (ii) epi(h) is closed, (iii) all the sublevel sets h−1((−∞, a]) are closed.

Proposition 9.1. If h is lower-semicontinuous, then proxh(y) is well-defined for all y ∈ Rn.

Proof. Let g(x) = h(x) + (1/2)‖x − y‖22. Since g is strongly convex, any minimizer is necessarily
unique. It remains to show that a minimizer exists. First note that g is bounded below: since
h is convex it can be lower bounded by an affine function h(x) ≥ 〈a, x〉 + b, and so g(x) ≥
〈a, x〉+b+(1/2)‖x−y‖22 ≥ minx∈Rn{〈a, x〉+b+(1/2)‖x−y‖22} = c > −∞. Also note that the sublevel
sets of g are all bounded since g(x) ≤ t =⇒ 〈a, x〉+ b+(1/2)‖x−y‖22 ≤ t ⇐⇒ ‖x− (y−a)‖22 ≤ C
for some constant C > 0. Now let (xi) be a sequence so that g(xi) ↓ infx∈Rn g(x). The sequence
(xi) lives in the sublevel set {x : g(x) ≤ g(x1)} which is closed and bounded. Thus we can extract
from (xi) a converging subsequence, that converges to some x. Since g is lower semicontinuous we
have g(x) ≤ lim infi g(xi) = inf g, and so x is a minimizer of g.

Note that
x = proxh(y) ⇐⇒ 0 ∈ ∂h(x) + (x− y) ⇐⇒ y ∈ x + ∂h(x). (2)

Remark 1. If h is smooth, we see that x = proxh(y) is a solution to the nonlinear equation
x +∇h(x) = y, i.e., it satisfies x = (I +∇h)−1(y).

Just like with the projection, one can prove that the proximal map is nonexpansive, i.e., that

‖proxh(y1)− proxh(y2)‖2 ≤ ‖y1 − y2‖2.

To see why, let x1 = proxh(y1) and x2 = proxh(y2). Then y1 − x1 ∈ ∂h(x1), and so we can write:

h(x2) ≥ h(x1) + 〈y1 − x1, x2 − x1〉 .

Similarly, from y2 − x2 ∈ ∂h(x2), we get

h(x1) ≥ h(x2) + 〈y2 − x2, x1 − x2〉 .

Summing the two inequalities, we get 0 ≥ 〈x1 − y1 + y2 − x2, x1 − x2〉 which corresponds to

‖x1 − x2‖22 ≤ 〈y1 − y2, x1 − x2〉 (3)

and which, by Cauchy-Schwarz implies ‖x1 − x2‖2 ≤ ‖y1 − y2‖2 as desired.
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Example Let h(x) = |x| defined on R. Then one can verify (exercise!) that for any t > 0,

proxth(y) = argmin
x∈R

{
|x|+ 1/(2t)(x− y)2

}
= St(y) :=


y + t if y ≤ −t
0 if |y| < t

y − t if y ≥ t.

(4)

This function is known as soft-thresholding. See Figure 1.
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Figure 1: The soft-thresholding function (4) for t = 1.

Observe that if h(x) =
∑n

i=1 hi(xi), then the prox of h decomposes:

(proxh(y))i = proxhi
(yi).

This implies for example that the prox operator of the `1 norm function is a componentwise soft-
thresholding:

proxt‖·‖1(y) = [St(yi)]1≤i≤n

EXERCISE: Compute the proximal operators for the following functions: (i) h(x) = (1/2)xTAx
where A is symmetric positive definite; (ii) h(x) = −

∑n
i=1 log xi for x ∈ Rn

++.
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