Topics in Convex Optimisation (Lent 2023) Lecturer: Hamza Fawzi

9 Proximal mapping

The proximal mapping is a “functional” generalization of the projection mapping. Given a convex
function h : R®™ — R, the proximal mapping associated to f is
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pros, () = anguin { 1(0) + 5o =l | )
TzER™

Clearly the proximal operator of the indicator function Ic of a closed convex set is precisely the

projection operator.

The next proposition guarantees that prox; is well-defined under mild conditions on f. A
function h is lower-semicontinuous (Isc) if h(x) < liminf;_, f(x;) for any sequence (x;) converging
to x.

EXERCISE: Let h : R® — R. Prove that the following are equivalent: (i) h is lower-

semicontinuous, (i) epi(h) is closed, (iii) all the sublevel sets h~!((—o0, a]) are closed.
Proposition 9.1. If h is lower-semicontinuous, then prox,(y) is well-defined for all y € R™.

Proof. Let g(z) = h(x) + (1/2)|lz — y||3. Since g is strongly convex, any minimizer is necessarily
unique. It remains to show that a minimizer exists. First note that g is bounded below: since
h is convex it can be lower bounded by an affine function h(x) > (a,z) + b, and so g(x) >
{a,z)+b+(1/2)||x—y||3 > mingegn{{a, z)+b+(1/2)||x—y||3} = ¢ > —oc. Also note that the sublevel
sets of g are all bounded since g(z) <t = {(a,2)+b+(1/2)|lz—y|3 <t < |z—(y—a)|3 < C
for some constant C' > 0. Now let (z;) be a sequence so that g(z;) | infyern g(z). The sequence
(z;) lives in the sublevel set {z : g(z) < g(x1)} which is closed and bounded. Thus we can extract
from (z;) a converging subsequence, that converges to some z. Since g is lower semicontinuous we
have g(x) < liminf; g(z;) = inf g, and so z is a minimizer of g. O

Note that
r =prox,(y) <= 0€ 0h(x)+ (x —y) < y € x+ Oh(z). (2)

Remark 1. If h is smooth, we see that x = prox,(y) is a solution to the nonlinear equation
x4+ Vh(z) =y, i.e., it satisfies v = (I + Vh)"1(y).

Just like with the projection, one can prove that the proximal map is nonexpansive, i.e., that
[ proxy,(y1) — proxy (y2)ll2 < lly1 — y2ll2-

To see why, let 1 = prox,(y1) and z2 = prox;(y2). Then y; — x1 € Oh(z1), and so we can write:
h(z2) > h(x1) + (y1 — 21,22 — 1) -

Similarly, from yo — x9 € Oh(x2), we get
h(z1) > h(x2) + (y2 — x2, 21 — 2) .

Summing the two inequalities, we get 0 > (x1 — y1 + y2 — 2,21 — x2) which corresponds to

21 = 2|5 < (1 — y2, 21 — x2) (3)

and which, by Cauchy-Schwarz implies ||z1 — z2||2 < [|y1 — y2]|2 as desired.



Example Let h(z) = |z| defined on R. Then one can verify (exercise!) that for any ¢ > 0,

y+t ify<—t
prox,,(y) = argmin {|z] +1/(2t)(z —y)*} = Se(y) =1 0 if y] <t
e y—t ify>t.

This function is known as soft-thresholding. See Figure 1.
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Figure 1: The soft-thresholding function (4) for t = 1.
Observe that if h(z) =Y | hi(x;), then the prox of h decomposes:

(prox;(y))i = proxy, (yi)-

This implies for example that the prox operator of the £; norm function is a componentwise soft-

thresholding:
prox, ., (¥) = [St(yi)|1<i<n

EXERCISE: Compute the proximal operators for the following functions: (i) h(z) = (1/2)2T Az

where A is symmetric positive definite; (i) h(z) = — Y ;| logz; for z € R .
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