## 9 Proximal mapping

The proximal mapping is a "functional" generalization of the projection mapping. Given a convex function $h: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, the proximal mapping associated to $f$ is

$$
\begin{equation*}
\operatorname{prox}_{h}(y)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{h(x)+\frac{1}{2}\|x-y\|_{2}^{2}\right\} . \tag{1}
\end{equation*}
$$

Clearly the proximal operator of the indicator function $I_{C}$ of a closed convex set is precisely the projection operator.

The next proposition guarantees that prox $_{h}$ is well-defined under mild conditions on $f$. A function $h$ is lower-semicontinuous (lsc) if $h(x) \leq \liminf _{i \rightarrow \infty} f\left(x_{i}\right)$ for any sequence ( $x_{i}$ ) converging to $x$.

EXERCISE: Let $h: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$. Prove that the following are equivalent: (i) $h$ is lowersemicontinuous, (ii) epi $(h)$ is closed, (iii) all the sublevel sets $h^{-1}((-\infty, a])$ are closed.
Proposition 9.1. If $h$ is lower-semicontinuous, then $\operatorname{prox}_{h}(y)$ is well-defined for all $y \in \mathbb{R}^{n}$.
Proof. Let $g(x)=h(x)+(1 / 2)\|x-y\|_{2}^{2}$. Since $g$ is strongly convex, any minimizer is necessarily unique. It remains to show that a minimizer exists. First note that $g$ is bounded below: since $h$ is convex it can be lower bounded by an affine function $h(x) \geq\langle a, x\rangle+b$, and so $g(x) \geq$ $\langle a, x\rangle+b+(1 / 2)\|x-y\|_{2}^{2} \geq \min _{x \in \mathbb{R}^{n}}\left\{\langle a, x\rangle+b+(1 / 2)\|x-y\|_{2}^{2}\right\}=c>-\infty$. Also note that the sublevel sets of $g$ are all bounded since $g(x) \leq t \Longrightarrow\langle a, x\rangle+b+(1 / 2)\|x-y\|_{2}^{2} \leq t \Longleftrightarrow\|x-(y-a)\|_{2}^{2} \leq C$ for some constant $C>0$. Now let $\left(x_{i}\right)$ be a sequence so that $g\left(x_{i}\right) \downarrow \inf _{x \in \mathbb{R}^{n}} g(x)$. The sequence $\left(x_{i}\right)$ lives in the sublevel set $\left\{x: g(x) \leq g\left(x_{1}\right)\right\}$ which is closed and bounded. Thus we can extract from $\left(x_{i}\right)$ a converging subsequence, that converges to some $x$. Since $g$ is lower semicontinuous we have $g(x) \leq \liminf _{i} g\left(x_{i}\right)=\inf g$, and so $x$ is a minimizer of $g$.

Note that

$$
\begin{equation*}
x=\operatorname{prox}_{h}(y) \Longleftrightarrow 0 \in \partial h(x)+(x-y) \Longleftrightarrow y \in x+\partial h(x) \tag{2}
\end{equation*}
$$

Remark 1. If $h$ is smooth, we see that $x=\operatorname{prox}_{h}(y)$ is a solution to the nonlinear equation $x+\nabla h(x)=y$, i.e., it satisfies $x=(I+\nabla h)^{-1}(y)$.

Just like with the projection, one can prove that the proximal map is nonexpansive, i.e., that

$$
\left\|\operatorname{prox}_{h}\left(y_{1}\right)-\operatorname{prox}_{h}\left(y_{2}\right)\right\|_{2} \leq\left\|y_{1}-y_{2}\right\|_{2} .
$$

To see why, let $x_{1}=\operatorname{prox}_{h}\left(y_{1}\right)$ and $x_{2}=\operatorname{prox}_{h}\left(y_{2}\right)$. Then $y_{1}-x_{1} \in \partial h\left(x_{1}\right)$, and so we can write:

$$
h\left(x_{2}\right) \geq h\left(x_{1}\right)+\left\langle y_{1}-x_{1}, x_{2}-x_{1}\right\rangle .
$$

Similarly, from $y_{2}-x_{2} \in \partial h\left(x_{2}\right)$, we get

$$
h\left(x_{1}\right) \geq h\left(x_{2}\right)+\left\langle y_{2}-x_{2}, x_{1}-x_{2}\right\rangle .
$$

Summing the two inequalities, we get $0 \geq\left\langle x_{1}-y_{1}+y_{2}-x_{2}, x_{1}-x_{2}\right\rangle$ which corresponds to

$$
\begin{equation*}
\left\|x_{1}-x_{2}\right\|_{2}^{2} \leq\left\langle y_{1}-y_{2}, x_{1}-x_{2}\right\rangle \tag{3}
\end{equation*}
$$

and which, by Cauchy-Schwarz implies $\left\|x_{1}-x_{2}\right\|_{2} \leq\left\|y_{1}-y_{2}\right\|_{2}$ as desired.

Example Let $h(x)=|x|$ defined on $\mathbb{R}$. Then one can verify (exercise!) that for any $t>0$,

$$
\operatorname{prox}_{t h}(y)=\underset{x \in \mathbb{R}}{\operatorname{argmin}}\left\{|x|+1 /(2 t)(x-y)^{2}\right\}=S_{t}(y):= \begin{cases}y+t & \text { if } y \leq-t  \tag{4}\\ 0 & \text { if }|y|<t \\ y-t & \text { if } y \geq t\end{cases}
$$

This function is known as soft-thresholding. See Figure 1.


Figure 1: The soft-thresholding function (4) for $t=1$.
Observe that if $h(x)=\sum_{i=1}^{n} h_{i}\left(x_{i}\right)$, then the prox of $h$ decomposes:

$$
\left(\operatorname{prox}_{h}(y)\right)_{i}=\operatorname{prox}_{h_{i}}\left(y_{i}\right) .
$$

This implies for example that the prox operator of the $\ell_{1}$ norm function is a componentwise softthresholding:

$$
\operatorname{prox}_{t\|\cdot\|_{1}}(y)=\left[S_{t}\left(y_{i}\right)\right]_{1 \leq i \leq n}
$$

EXERCISE: Compute the proximal operators for the following functions: (i) $h(x)=(1 / 2) x^{T} A x$ where $A$ is symmetric positive definite; (ii) $h(x)=-\sum_{i=1}^{n} \log x_{i}$ for $x \in \mathbb{R}_{++}^{n}$.

## References

[BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202, 2009. 5
[PB14] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends $®$ in Optimization, 1(3):127-239, 2014.

