Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

Example class 1

1.

2.

Prove the separating hyperplane theorem (Theorem 1.1) when C' is not necessarily closed.

Let C, D be two disjoint convex sets in R™. Show that there is a € R™ \ {0} and b € R such
that (a,z) < b for all x € C and (a,y) > b for all y € D. If we assume C and D closed, can
we always find a strict separating hyperplane?

(Carathéodory theorem) Let S C R™. Show that any point in conv(S) can be written as a
convex combination of at most n+ 1 points of S (hint: any k points sq,..., s, with k > n+2
are affinely dependent i.e., there exist yuq, ..., ur such that Ele wis;i = 0 and Zle i =0).

. Let C be a closed and bounded convex set in R™ and consider the minimization problem

min{(c, ) : x € C} where ¢ € R". Show that there is at least one optimal solution that is an
extreme point of C.

. Let P ={z € R": Ax < b} be a polyhedron where A € R™*™ and b € R™ and the inequality

Az < b is interpreted componentwise. Show that if z is an extreme point of P then there
exists I C {1,...,m} such that ker(A;) = {0} (where Ay is the matrix obtained from A by
keeping only the rows in ), b € im(A;) and x = A;'b;. Deduce that P has a finite number
of extreme points and give an upper bound for the number of extreme points in terms of m
and n. [Note: an extreme point of a polyhedron is sometimes called a basic feasible point, especially
in the context of the simplex algorithm for linear programming. The set I that identifies the extreme
point is known as the basis of the basic feasible point].

. Let P = conv(vy,...,vy) where vy,...,vx € R™ Show that P is the intersection of a finite

number of halfspaces. Give an upper bound on the number of halfspaces needed. (Hint:
Assume (without loss of generality) that P has nonempty interior and 0 € int(P), and apply
the result of the previous question to the polyhedron P° = {y € R" : (y,v;) < 1, Vi =
1,...,N}; P°is known as the polar of P).

(Linear image of a polyhedron) Let P = {z € R"™ : Az < b} be a polyhedron and assume that
P is bounded. Let 7 : R” — R* be a linear map. Show that 7(P) is also a polyhedron, i.e., it
is the intersection of a finite number of halfspaces. (Hint: Use questions 2 and 3 above. Note:
the assumption P is bounded is for simplicity; the result is still true if P is not bounded).

(Farkas’ lemma) Let K = {x € R" : Az > 0} be a polyhedral cone. Show that K* =
cone(ay,...,ay,) where ay,...,a, are the rows of A. Deduce Farkas’ lemma (conic version):
if (y,x) >0 for all z € K then there exists A > 0 such that y7 = AT A.

. Let K be a closed convex cone in R"™.

(a) Show that the following conditions are equivalent:

(i) K has nonempty interior
(ii) span(K) =R"
(iii) For any w € R™\ {0} there exists x € K such that (w,z) # 0.

(b) Show that K is pointed if and only K* has nonempty interior.



(c) Show that y € int(K™*) if and only if (y,z) > 0 for all z € K \ {0}.

10. In this exercise we will prove Minkowski’s theorem for closed convex pointed cones (Theorem
2.2 in lecture 2). Let K be a closed convex cone.

(a) Assume that there exists y € R™ such that (y,x) > 0 for all x € K \ {0}. Show how to
prove the theorem in this case. (hint: define C = {x € K s.t. (y,z) = 1}; show that C
is a compact convex set and apply Minkowski’s theorem for compact convez sets to C').

(b) Use Question 9 to show that when K is a closed pointed convex cone, there exists y € R"
verifying (y,z) > 0 for all z € K \ {0}. Use part (a) to conclude proof of Theorem 2.2.

11. For each of the following sets: show that it is a closed convex pointed cone with nonempty
interior, identify the extreme rays and give a simple expression for the dual cone:

(a) Rt ={zeR":2; >0Vi=1,...,n}

(b) Q% ={(x,t) e R? x Ry : ||z[l2 < t}

(¢) K ={(z,y,2) € R xR: /7y > |2|}
Show that there is a linear invertible map A : R® — R3 such that A(Q?) = K.



