
Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

Example class 1

1. Prove the separating hyperplane theorem (Theorem 1.1) when C is not necessarily closed.

2. Let C,D be two disjoint convex sets in Rn. Show that there is a ∈ Rn \ {0} and b ∈ R such
that 〈a, x〉 ≤ b for all x ∈ C and 〈a, y〉 ≥ b for all y ∈ D. If we assume C and D closed, can
we always find a strict separating hyperplane?

3. (Carathéodory theorem) Let S ⊂ Rn. Show that any point in conv(S) can be written as a
convex combination of at most n+ 1 points of S (hint: any k points s1, . . . , sk with k ≥ n+ 2
are affinely dependent i.e., there exist µ1, . . . , µk such that

∑k
i=1 µisi = 0 and

∑k
i=1 µi = 0).

4. Let C be a closed and bounded convex set in Rn and consider the minimization problem
min{〈c, x〉 : x ∈ C} where c ∈ Rn. Show that there is at least one optimal solution that is an
extreme point of C.

5. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron where A ∈ Rm×n and b ∈ Rm and the inequality
Ax ≤ b is interpreted componentwise. Show that if x is an extreme point of P then there
exists I ⊆ {1, . . . ,m} such that ker(AI) = {0} (where AI is the matrix obtained from A by
keeping only the rows in I), b ∈ im(AI) and x = A−1

I bI . Deduce that P has a finite number
of extreme points and give an upper bound for the number of extreme points in terms of m
and n. [Note: an extreme point of a polyhedron is sometimes called a basic feasible point, especially

in the context of the simplex algorithm for linear programming. The set I that identifies the extreme

point is known as the basis of the basic feasible point].

6. Let P = conv(v1, . . . , vN ) where v1, . . . , vN ∈ Rn. Show that P is the intersection of a finite
number of halfspaces. Give an upper bound on the number of halfspaces needed. (Hint:
Assume (without loss of generality) that P has nonempty interior and 0 ∈ int(P ), and apply
the result of the previous question to the polyhedron P o = {y ∈ Rn : 〈y, vi〉 ≤ 1, ∀i =
1, . . . , N}; P o is known as the polar of P ).

7. (Linear image of a polyhedron) Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron and assume that
P is bounded. Let π : Rn → Rk be a linear map. Show that π(P ) is also a polyhedron, i.e., it
is the intersection of a finite number of halfspaces. (Hint: Use questions 2 and 3 above. Note:
the assumption P is bounded is for simplicity; the result is still true if P is not bounded).

8. (Farkas’ lemma) Let K = {x ∈ Rn : Ax ≥ 0} be a polyhedral cone. Show that K∗ =
cone(a1, . . . , am) where a1, . . . , am are the rows of A. Deduce Farkas’ lemma (conic version):
if 〈y, x〉 ≥ 0 for all x ∈ K then there exists λ ≥ 0 such that yT = λTA.

9. Let K be a closed convex cone in Rn.

(a) Show that the following conditions are equivalent:

(i) K has nonempty interior
(ii) span(K) = Rn

(iii) For any w ∈ Rn \ {0} there exists x ∈ K such that 〈w, x〉 6= 0.

(b) Show that K is pointed if and only K∗ has nonempty interior.
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(c) Show that y ∈ int(K∗) if and only if 〈y, x〉 > 0 for all x ∈ K \ {0}.

10. In this exercise we will prove Minkowski’s theorem for closed convex pointed cones (Theorem
2.2 in lecture 2). Let K be a closed convex cone.

(a) Assume that there exists y ∈ Rn such that 〈y, x〉 > 0 for all x ∈ K \ {0}. Show how to
prove the theorem in this case. (hint: define C = {x ∈ K s.t. 〈y, x〉 = 1}; show that C
is a compact convex set and apply Minkowski’s theorem for compact convex sets to C).

(b) Use Question 9 to show that when K is a closed pointed convex cone, there exists y ∈ Rn

verifying 〈y, x〉 > 0 for all x ∈ K \ {0}. Use part (a) to conclude proof of Theorem 2.2.

11. For each of the following sets: show that it is a closed convex pointed cone with nonempty
interior, identify the extreme rays and give a simple expression for the dual cone:

(a) Rn
+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}

(b) Q3 = {(x, t) ∈ R2 × R+ : ‖x‖2 ≤ t}
(c) K = {(x, y, z) ∈ R2

+ × R :
√
xy ≥ |z|}

Show that there is a linear invertible map A : R3 → R3 such that A(Q3) = K.
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