Example class 2

1. Consider the optimization problem:

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^m} \quad \langle c, x \rangle + \langle d, y \rangle \quad \text{s.t.} \quad Fx + Gy = b, \quad x \ge 0 \tag{1}$$

where F, G, b, c, d are of appropriate sizes, i.e., $F \in \mathbb{R}^{k \times n}$, $G \in \mathbb{R}^{k \times m}$, $b \in \mathbb{R}^k$ and $c \in \mathbb{R}^n$, $d \in \mathbb{R}^m$. Show how to put (1) into linear programming standard form (Equation (2) in Lecture 3).

- 2. Let $A \in \mathbf{S}^n_+$ and $u \in \mathbb{R}^n$. Show that $u^T A u = 0 \iff u \in \ker(A)$.
- 3. Let $A \in \mathbf{S}^n$ and R an invertible $n \times n$ matrix. Show that $A \succeq 0 \iff R^T A R \succeq 0$ and $A \succ 0 \iff R^T A R \succ 0$.
- 4. (Schur complement) Show that

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succ 0 \iff A \succ 0 \text{ and } C - B^T A^{-1} B \succ 0$$
⁽²⁾

- 5. (Operator monotonicity of inverse function) Recall that we use the notation $A \succ B$ for $A B \succ 0$. Show that if $A \succ B \succ 0$ then $A^{-1} \prec B^{-1}$ (*Hint: start with the case* B = I (*identity matrix*) then use the fact that $A \succ B$ if and only $B^{-1/2}AB^{-1/2} \succ I$).
- 6. (Schur product theorem) Let $A, B \in \mathbf{S}^n$ and assume that $A \succeq 0$ and $B \succeq 0$. Show that $A \odot B \succeq 0$ where $A \odot B$ is the *entrywise product* of A and B, i.e., $(A \odot B)_{ij} = A_{ij}B_{ij}$ (*Hint: start with the case where* A *has rank one*).
- 7. Compute the duals of the following problems:
 - (a) minimise 2x + y s.t. $\begin{bmatrix} 1-x & y \\ y & 1+x \end{bmatrix} \succeq 0$
 - (b) minimise $\operatorname{Tr}(CX)$ s.t. $X_{ii} = 1 \ \forall i = 1, \dots, n, \ X \succeq 0 \ (C \text{ is a fixed matrix in } \mathbf{S}^n)$
 - (c) maximise $\langle b, y \rangle$ s.t. $c = z + \mathcal{A}^*(y), z \in K^*$ $(\mathcal{A} : \mathbb{R}^n \to \mathbb{R}^m$ linear, $b \in \mathbb{R}^m, c \in \mathbb{R}^n$ are fixed).
- 8. Give an example of a proper cone K and linear map M such that M(K) is not closed.
- 9. Consider the optimization problem $\min_{x \in \mathbb{R}^n} ||x||_2$ s.t. $Ax = b, x \ge 0$. Here $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ are fixed. Show that this problem can be expressed as a semidefinite program. [*Hint: Express the constraint* $||x||_2^2 \le t^2$ as a semidefinite programming constraint].
- 10. Let M_1, \ldots, M_k be fixed $n \times n$ symmetric matrices. Consider the optimization problem: $\min_x \lambda_{\max} \left(\sum_{i=1}^k x_i M_i \right)$ s.t. Ax = b where A and b are fixed and λ_{\max} denotes the largest eigenvalue. Show that it can be expressed as a semidefinite program.

11. Consider the following optimization problem which arises in experiment design (statistics):

minimize Trace
$$\left[\left(\sum_{i=1}^{k} x_i M_i \right)^{-1} \right]$$
 s.t. $x \ge 0, \sum_{i=1}^{k} x_i = 1$ (3)

where M_1, \ldots, M_k are fixed positive definite matrices. Show that the problem above can be expressed as a semidefinite program. [*Hint: Use the Schur complement lemma to give a* semidefinite formulation of the constraint $\operatorname{Tr}(A^{-1}) \leq t$]

12. (Nesterov's $2/\pi$ result) Let A be a real symmetric matrix of size $n \times n$, and consider the following binary quadratic optimisation problem:

maximise
$$x^T A x$$
 : $x \in \{-1, 1\}^n$. (4)

Let v^* be the optimal value of (4).

(a) Consider the semidefinite program:

maximise
$$\operatorname{Tr}(AX)$$
 : $X \succeq 0$ and $X_{ii} = 1, \forall i = 1, \dots, n.$ (5)

Let p_{SDP}^* be the optimal value of (5). Show that $v^* \leq p_{SDP}^*$.

From now on we are going to assume that A is positive semidefinite. The purpose of the rest of this problem is to show that $\frac{2}{\pi}p_{SDP}^* \leq v^*$. To prove this inequality, we will use a "randomised rounding" scheme similar to the one we saw in lecture for the maximum cut problem.

(b) Let X be the optimal solution (5) and let $v_1, \ldots, v_n \in \mathbb{R}^r$ with $r = \operatorname{rank}(X)$ such that $X_{ij} = \langle v_i, v_j \rangle$ for all $i, j = 1, \ldots, n$. Define the random variable $y \in \{-1, 1\}^n$ as follows:

$$y_i = \operatorname{sign}(\langle v_i, Z \rangle)$$

where Z is a standard Gaussian variable on \mathbb{R}^r . We saw in lecture that

$$\mathbb{E}[y_i y_j] = \frac{2}{\pi} \arcsin(X_{ij}) \quad \forall 1 \le i, j \le n,$$

which you can use without proof. Show that:

$$v^* \ge \mathbb{E}[y^T A y] = \frac{2}{\pi} \operatorname{Tr}(A \operatorname{arcsin}[X])$$

where $\operatorname{arcsin}[X]$ is the matrix obtained by applying the arcsin function to each entry of X, i.e., $\operatorname{arcsin}[X]_{ij} = \operatorname{arcsin}(X_{ij})$.

(c) Recall the Schur product theorem:

Schur product theorem: If $P \succeq 0$ and $Q \succeq 0$ then $P \odot Q \succeq 0$ where $P \odot Q$ is the entrywise product of P and Q.

Use the Schur product theorem (without proof) to show that if $X \succeq 0$ then $\arcsin[X] - X \succeq 0$. [*Hint: Use the fact that* $\arcsin(x) = \sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{4^k(2k+1)} x^{2k+1}$ for $x \in [-1,1]$].

(d) Using the positive semidefinite assumption on A show then that $\operatorname{Tr}(A \operatorname{arcsin}[X]) \geq \operatorname{Tr}(AX)$. Conclude that $v^* \geq \frac{2}{\pi} p^*_{SDP}$.