
Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

Example class 2

1. Consider the optimization problem:

minimise
x∈Rn,y∈Rm

〈c, x〉+ 〈d, y〉 s.t. Fx+Gy = b, x ≥ 0 (1)

where F,G, b, c, d are of appropriate sizes, i.e., F ∈ Rk×n, G ∈ Rk×m, b ∈ Rk and c ∈ Rn, d ∈
Rm. Show how to put (1) into linear programming standard form (Equation (2) in Lecture
3).

Solution: The reason why (1) is not already in standard form is that y is not constrained to be
nonnegative. To deal with this we use the fact that any vector y ∈ Rm can be written as y = y1 − y2
where y1, y2 ≥ 0. Thus our problem is equivalent to:

minimise
x∈Rn,y1,y2∈Rm

〈c, x〉+ 〈d, y1 − y2〉 s.t. Fx+ y1 − y2 = b, x ≥ 0, y1 ≥ 0, y2 ≥ 0

This problem is now in standard form.

2. Let A ∈ Sn+ and u ∈ Rn. Show that uTAu = 0 ⇐⇒ u ∈ ker(A).

Solution: The implication u ∈ ker(A)⇒ uTAu = 0 is trivial. We show the reverse implication

when A � 0. Let A =
∑n
i=1 λiviv

T
i be an eigenvalue decomposition of A where λ1, . . . , λn ≥ 0. Since

uTAu = 0 we get
∑n
i=1 λi(u

T vi)
2 = 0. Since each term in the sum is nonnegative, for the sum to be

zero we must have λi(u
T vi)

2 = 0 for all i = 1, . . . , n. In particular this means that uT vi = 0 whenever

λi > 0. Since span{vi : λi > 0} = im(A) we get that u ∈ im(A)⊥ = ker(A). (Remark: Another way

to prove the implication uTAu = 0⇒ u ∈ ker(A) (without an eigenvalue decomposition) is to observe

that for any t ∈ R, x ∈ Rn: 0 ≤ (u + tx)TA(u + tx) = t2xTAx + txTAu. If we fix x, the fact that

t2xTAx+ txTAu ≥ 0 for all t ∈ R implies necessarily that xTAu = 0. This is true for all x and thus

shows that Au = 0 i.e., u ∈ ker(A)).

3. Let A ∈ Sn and R an invertible n × n matrix. Show that A � 0 ⇐⇒ RTAR � 0 and
A � 0 ⇐⇒ RTAR � 0.

Solution: Assume A � 0 and let’s show that RTAR � 0. For any y ∈ Rn we have yTRTARy =

xTAx ≥ 0 where x = Ry. We have shown that yTRTARy ≥ 0 for all y ∈ Rn thus RTAR is positive

semidefinite. The reverse implication is similar. The other statement about positive definite matrices

is also similar.

4. (Schur complement) Show that[
A B
BT C

]
� 0 ⇐⇒ A � 0 and C −BTA−1B � 0 (2)

Solution: Note that what we want to prove here is a “matrix version” of the following simple
fact which can be proved using high school algebra (assuming a 6= 0 here):

ax2 + 2bx+ c > 0 ∀x ∈ R ⇐⇒ a > 0 and b2 − ac < 0.

The proof of the matrix case is in fact not much different from the scalar case.
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Observe that for any (x, y) ∈ Rn × Rn:[
x
y

]T [
A B
BT C

] [
x
y

]
= xTAx+ 2xTBy + yTCy

= (x+A−1By)TA(x+A−1By) + yT (C −BTA−1B)y.

(3)

(Equation (3) is nothing but a “completion of square” identity). The proof of the equivalence (2)

follows relatively easily from (3). For the direction ⇒, simply take y = 0 in (3) to show that A � 0

and x = −A−1By to show that C −BTA−1B � 0. The direction ⇐ is immediate.

5. (Operator monotonicity of inverse function) Recall that we use the notation A � B for
A − B � 0. Show that if A � B � 0 then A−1 ≺ B−1 (Hint: start with the case B = I
(identity matrix) then use the fact that A � B if and only B−1/2AB−1/2 � I).

Solution: We first do the case B = I. If A � I this means that all the eigenvalues of A are > 1.
Since the eigenvalues of A−1 are the inverses of the eigenvalues of A we have that A−1 ≺ I.

Consider now an arbitrary B such that A � B � 0. We want to show that A−1 ≺ B−1. Since A �
B � 0 we have B−1/2AB−1/2 � I. It thus follows from our previous case that (B−1/2AB−1/2)−1 ≺ I.

But this means that B1/2A−1B1/2 ≺ I i.e., A−1 ≺ B−1.

6. (Schur product theorem) Let A,B ∈ Sn and assume that A � 0 and B � 0. Show that
A�B � 0 where A�B is the entrywise product of A and B, i.e., (A�B)ij = AijBij (Hint:
start with the case where A has rank one).

Solution: Assume A = aaT (rank-one) and B � 0. We want to show A � B � 0. For any
x ∈ Rn we have

xT (A�B)x =
∑
ij

xixj(A�B)ij =
∑
ij

xixjAijBij =
∑
ij

xixjaiajBij = (x� a)TB(x� a)

where x� a is the vector obtained by componentwise multiplication of x and a. Since B � 0 we have
xT (A�B)x = (x� a)TB(x� a) ≥ 0. This is valid for any x ∈ Rn and thus shows that A�B � 0.

We now treat the general case. If A � 0 we can decompose A as A =
∑n
i=1 aia

T
i . Hence if B � 0 we

have A�B =
∑n
i=1(aia

T
i )�B � 0. This completes the proof.

7. Compute the duals of the following problems:

(a) minimise
x,y∈R

2x+ y s.t.
[
1−x y
y 1+x

]
� 0

(b) minimise
X∈Sn

Tr(CX) s.t. Xii = 1 ∀i = 1, . . . , n, X � 0 (C is a fixed matrix in Sn)

(c) maximise
z∈Rn,y∈Rm

〈b, y〉 s.t. c = z + A∗(y), z ∈ K∗ (A : Rn → Rm linear, b ∈ Rm, c ∈ Rn are

fixed).

Solution:

• maximise
a,b,c

− (a+ c) s.t. c− a = 2, b = 1/2,
[
a b
b c

]
� 0.

• maximise
Z,λ

∑n
i=1 λi s.t. C = Z + diag(λ), Z � 0.

• (Warning: this is a maximisation problem and we have to be careful with the order of inequal-
ities.) Let λ be the dual variable for the linear constraint c = z + A∗(y) and x ∈ K be the
dual variable for the constraint z ∈ K∗. With these dual variables, we know that any fea-
sible y, z of our problem will satisfy 〈λ, c − z − A∗(y)〉 + 〈x, z〉 ≥ 0. Rearranging this gives
〈λ− x, z〉+ 〈A(λ), y〉 ≤ 〈λ, c〉. Since we are interested in the objective 〈b, y〉 we want λ− x = 0
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and A(λ) = b. The dual problem consists in finding the best upper bound on the objective (since
our problem was a maximisation). Thus the dual problem takes the form:

minimise
x,λ

〈λ, c〉

subject to λ− x = 0
A(λ) = b
x ∈ K.

(4)

If we eliminate the variable λ (since λ = x) we get

minimise 〈c, x〉 : A(x) = b x ∈ K.

8. Give an example of a proper cone K and linear map M such that M(K) is not closed.

Solution: Take K = S2
+ and M ([ x yy z ]) = (x, y). Then M(K) = (R++ × R) ∪ {(0, 0)}.

9. Consider the optimization problem minx∈Rn ‖x‖2 s.t. Ax = b, x ≥ 0. Here A ∈ Rm×n, b ∈ Rm
are fixed. Show that this problem can be expressed as a semidefinite program. [Hint: Express
the constraint ‖x‖22 ≤ t2 as a semidefinite programming constraint ].

Solution: Using Schur complements we have xTx = ‖x‖22 ≤ t2 iff
[
t xT

x tIn

]
� 0. Our problem can

be written as:
min

x∈Rn,t∈R
t s.t. Ax = b, x ≥ 0, ‖x‖2 ≤ t

which is then equivalent to:

min
x∈Rn,t∈R

t s.t. Ax = b, x ≥ 0,
[
t xT

x tIn

]
� 0.

This is a semidefinite program.

10. Let M1, . . . ,Mk be fixed n × n symmetric matrices. Consider the optimization problem:

minx λmax

(∑k
i=1 xiMi

)
s.t. Ax = b where A and b are fixed and λmax denotes the largest

eigenvalue. Show that it can be expressed as a semidefinite program.

Solution: Note that λmax(A) ≤ t iff A− tI � 0. It follows that our problem can be written as:

min
x∈Rk,t∈R

t s.t. Ax = b,

k∑
i=1

xiMi − tI � 0.

This is a semidefinite program.

11. Consider the following optimization problem which arises in experiment design (statistics):

minimize Trace

( k∑
i=1

xiMi

)−1 s.t. x ≥ 0,

k∑
i=1

xi = 1 (5)

where M1, . . . ,Mk are fixed positive definite matrices. Show that the problem above can
be expressed as a semidefinite program. [Hint: Use the Schur complement lemma to give a
semidefinite formulation of the constraint Tr(A−1) ≤ t]

Solution: Using the Schur complement one can verify that Tr(A−1) ≤ t iff ∃B s.t. [A I
I B ] � 0

and Tr(B) ≤ t. Thus our problem is equivalent to:

minimize
x∈Rk,B∈Sn,t∈R

t s.t. x ≥ 0,

k∑
i=1

xi = 1,

[∑k
i=1 xiMi I
I B

]
� 0, Tr(B) ≤ t.

This is a semidefinite program.
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12. (Nesterov’s 2/π result) Let A be a real symmetric matrix of size n × n, and consider the
following binary quadratic optimisation problem:

maximise xTAx : x ∈ {−1, 1}n. (6)

Let v∗ be the optimal value of (6).

(a) Consider the semidefinite program:

maximise Tr(AX) : X � 0 and Xii = 1, ∀i = 1, . . . , n. (7)

Let p∗SDP be the optimal value of (7). Show that v∗ ≤ p∗SDP .

From now on we are going to assume that A is positive semidefinite. The
purpose of the rest of this problem is to show that 2

πp
∗
SDP ≤ v∗. To prove this inequality,

we will use a “randomised rounding” scheme similar to the one we saw in lecture for the
maximum cut problem.

(b) Let X be the optimal solution (7) and let v1, . . . , vn ∈ Rr with r = rank(X) such that
Xij = 〈vi, vj〉 for all i, j = 1, . . . , n. Define the random variable y ∈ {−1, 1}n as follows:

yi = sign(〈vi, Z〉)

where Z is a standard Gaussian variable on Rr. We saw in lecture that

E[yiyj ] =
2

π
arcsin(Xij) ∀1 ≤ i, j ≤ n,

which you can use without proof. Show that:

v∗ ≥ E[yTAy] =
2

π
Tr(A arcsin[X]).

where arcsin[X] is the matrix obtained by applying the arcsin function to each entry of
X, i.e., arcsin[X]ij = arcsin(Xij).

(c) Recall the Schur product theorem:

Schur product theorem: If P � 0 and Q � 0 then P � Q � 0 where P � Q is
the entrywise product of P and Q.

Use the Schur product theorem (without proof) to show that ifX � 0 then arcsin[X]−X � 0.

[Hint: Use the fact that arcsin(x) =
∑∞

k=0
(2kk )

4k(2k+1)
x2k+1 for x ∈ [−1, 1]].

(d) Using the positive semidefinite assumption on A show then that Tr(A arcsin[X]) ≥
Tr(AX). Conclude that v∗ ≥ 2

πp
∗
SDP .

Solution:

(a) If x is feasible for (6) then X = xxT is feasible for (7) and has the same objective function.

(b) By definition of v∗ we know that v∗ ≥ yTAy with probability one and hence v∗ ≥ E[yTAy].
Then we have E[yTAy] = E[Tr(AyyT )] = Tr(AE[yyT ]) = 2

π Tr(A arcsin[X]).

(c) Note that arcsin(x) − x has a series expansion with nonnegative coefficients, i.e., we can write
arcsin(x) − x =

∑∞
k=0 ckx

k where ck ≥ 0 for all k ∈ N. Thus if X � 0 we get arcsin[X] −X =∑∞
k=0 ckX

�k � 0 (where X�k = X � · · · �X (k times)) since each term is positive semidefinite
by the Schur product theorem.

(d) We get v∗ ≥ 2
π Tr(A arcsin[X]) ≥ 2

π Tr(AX) = 2
πp
∗
SDP as desired.
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