Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

Example class 2
1. Consider the optimization problem:

minimise (c,x) + (d,y) st. Frx+Gy=0>b, x>0 (1)
zeR"™ yeR™

where F, G, b, c,d are of appropriate sizes, i.e., F € RF*" G e RF*™ b e RF and c € R, d €
R™. Show how to put (1) into linear programming standard form (Equation (2) in Lecture
3).

Solution: The reason why (1) is not already in standard form is that y is not constrained to be
nonnegative. To deal with this we use the fact that any vector y € R™ can be written as y = y1 — yo
where y1,y2 > 0. Thus our problem is equivalent to:

minimise (c,x)y +(d,y1 —y2) st. Fr+y —ys=b x>0,941>0,92>0
T€R™ y; ,ys €R™

This problem is now in standard form.

2. Let A € ST and u € R™. Show that u” Au = 0 <= u € ker(A).

Solution: The implication u € ker(A) = u? Au = 0 is trivial. We show the reverse implication
when A = 0. Let A = Z?:l )\iviviT be an eigenvalue decomposition of A where \q,..., A\, > 0. Since
uT Au = 0 we get S Xi(uTv;)?2 = 0. Since each term in the sum is nonnegative, for the sum to be
zero we must have \;(u?v;)? = 0 for all i = 1,...,n. In particular this means that u”v; = 0 whenever
A; > 0. Since span{v; : \; > 0} = im(A) we get that u € im(A)+ = ker(A). (Remark: Another way
to prove the implication uT Au = 0 = u € ker(A) (without an eigenvalue decomposition) is to observe
that for any t € R,z € R": 0 < (u+ tz)TA(u + tz) = t227 Az + taT Au. If we fix x, the fact that
22T Az + t2T Au > 0 for all t € R implies necessarily that 7 Au = 0. This is true for all x and thus
shows that Au =0 i.e., u € ker(A)).

3. Let A € S™ and R an invertible n x n matrix. Show that A = 0 <= RTAR > 0 and
A>=0 < RTAR > 0.

Solution: Assume A > 0 and let’s show that RT AR > 0. For any y € R” we have y" RT ARy =
T Az > 0 where x = Ry. We have shown that y" RT ARy > 0 for all y € R™ thus RT AR is positive
semidefinite. The reverse implication is similar. The other statement about positive definite matrices
is also similar.

4. (Schur complement) Show that

[AB

BT C]>0<:>A>OandC—BTA1B>O (2)

Solution: Note that what we want to prove here is a “matriz version” of the following simple
fact which can be proved using high school algebra (assuming a # 0 here):
ar? +2br +c¢>0Vr €R <= a >0 and b* —ac < 0.

The proof of the matriz case is in fact not much different from the scalar case.



Observe that for any (z,y) € R™ x R™:

:rTA Bl |z
=27 Az + 22" By + y*C
o) s oJ ] = mrmaey o

=(z+ A 'By)TA(x + A7'By) + 4T (C — BTA™1B)y.

(Equation (3) is nothing but a “completion of square” identity). The proof of the equivalence (2)
follows relatively easily from (3). For the direction =, simply take y = 0 in (3) to show that A > 0
and x = —A~ !By to show that C — BT A~'B = 0. The direction <« is immediate.

5. (Operator monotonicity of inverse function) Recall that we use the notation A > B for
A — B = 0. Show that if A = B = 0 then A=' < B~! (Hint: start with the case B = I
(identity matriz) then use the fact that A = B if and only B~'/2AB~1/2 » I).

Solution: We first do the case B = I. If A > I this means that all the eigenvalues of A are > 1.
Since the eigenvalues of A~! are the inverses of the eigenvalues of A we have that A=! < I.

Consider now an arbitrary B such that A = B = 0. We want to show that A~! < B~!. Since A4 =
B = 0 we have B~Y/2AB~1/2 »~ [. Tt thus follows from our previous case that (B~'/2AB~/2)~! < T.
But this means that BY/24-1BY/2 < [ie, A~' < B~1

6. (Schur product theorem) Let A, B € S™ and assume that A > 0 and B > 0. Show that
A® B = 0 where A® B is the entrywise product of A and B, i.e., (A® B);; = A;;B;j (Hint:
start with the case where A has rank one).

Solution: Assume A = aa® (rank-one) and B = 0. We want to show A ® B > 0. For any
z € R™ we have

eT(AGB)r =) wiwj(AG B)ij = ) wiw;jAyBij = ) wiwja0;Bi; = (¢ ©a) Bz © a)
ij ij ij

where = ® a is the vector obtained by componentwise multiplication of = and a. Since B > 0 we have
2T (A® B)z = (r ® a)T B(x ® a) > 0. This is valid for any z € R” and thus shows that A ® B > 0.

We now treat the general case. If A = 0 we can decompose A as A = Zz;l aiaZT. Hence if B = 0 we

have A® B=Y"" (a;al) ® B = 0. This completes the proof.

7. Compute the duals of the following problems:

e -z y
(a) m;r};rerﬁése 2z +y s.t. [ ” 1+x} =0

(b) mi)r(lilsnise Tr(CX) st. Xiy=1Vi=1,...,n, X >0 (C is a fixed matrix in S")
e n

(c) mﬁxim%ge (b,y) st. ¢c=z+ A"(y),z € K* (A:R" — R™ linear, b € R™, ¢ € R" are
zE n’ye m
fixed).

Solution:

e maximise — (a+¢) st. c—a=2, b=1/2, [’52] = 0.

a,b,c

e maximise Yo A st C=Z+diag()), Z = 0.

e (Warning: this is a maximisation problem and we have to be careful with the order of inequal-
ities.) Let A be the dual variable for the linear constraint ¢ = z + A*(y) and z € K be the
dual variable for the constraint z € K*. With these dual variables, we know that any fea-
sible y,z of our problem will satisfy (A\,¢ — z — A*(y)) + (x,z) > 0. Rearranging this gives
A=z, 2) + (A(N),y) < (A, ¢). Since we are interested in the objective (b, y) we want A —z = 0



and A(A\) = b. The dual problem consists in finding the best upper bound on the objective (since
our problem was a maximisation). Thus the dual problem takes the form:

minimise (A, ¢)
z,A

subject to A—x =0 (4)
AN =b
rz e K.

If we eliminate the variable A (since A = ) we get
minimise (¢,z) : A(z)=0b z € K.

8. Give an example of a proper cone K and linear map M such that M (K) is not closed.

Solution: Take K = 8% and M ([3 ¥]) = (z,y). Then M(K) = (Ry4 x R) U {(0,0)}.

9. Consider the optimization problem min,cgn ||2||2 s.t. Az = b,z > 0. Here A € R™*" b € R™
are fixed. Show that this problem can be expressed as a semidefinite program. [Hint: Ezpress
the constraint ||z||3 < t* as a semidefinite programming constraint].

Solution: Using Schur complements we have z7x = ||z|]3 < 2 iff [; =" ] > 0. Our problem can

be written as:

min t st Arx=bz>0,|z|2<t
zEeR™ tER

which is then equivalent to:

min t st Ax:b,xZO,[tl ]PO.
zE€R™ tER

This is a semidefinite program.

10. Let My,..., My be fixed n x n symmetric matrices. Consider the optimization problem:
ming Amax (Zle lez) s.t. Ax = b where A and b are fixed and A\.x denotes the largest
eigenvalue. Show that it can be expressed as a semidefinite program.

Solution: Note that Apax(A) < tiff A —t¢I <0. It follows that our problem can be written as:

k

min t st. Ax =0, x;M; —tI <0.
2ERF tER ; e -

This is a semidefinite program.

11. Consider the following optimization problem which arises in experiment design (statistics):

k -1 k
minimize Trace (Z lel) st. x>0, Za:z =1 (5)
i=1 i=1

where My, ..., M} are fixed positive definite matrices. Show that the problem above can
be expressed as a semidefinite program. [Hint: Use the Schur complement lemma to give a
semidefinite formulation of the constraint Tr(A™!) < ]

Solution: Using the Schur complement one can verify that Tr(A™!) < ¢ iff 3B s.t. [4 5] =0
and Tr(B) < ¢. Thus our problem is equivalent to:

k k M
minimize t st. x>0, le =1, {Zi—llxl !
i=1

I
=0, Tr(B) <t.
zE€Rk BES™ teR B:| - r(B) <

This is a semidefinite program.



12. (Nesterov’s 2/7 result) Let A be a real symmetric matrix of size n x n, and consider the
following binary quadratic optimisation problem:

maximise 2! Az : xe{-1,1}" (6)
Let v* be the optimal value of (6).
(a) Consider the semidefinite program:
maximise Tr(AX) : X >O0and X;;=1,Vi=1,...,n. (7)

Let p§pp be the optimal value of (7). Show that v* < pp.

From now on we are going to assume that A is positive semidefinite. The
purpose of the rest of this problem is to show that %p’g pp < v*. To prove this inequality,
we will use a “randomised rounding” scheme similar to the one we saw in lecture for the
maximum cut problem.

(b) Let X be the optimal solution (7) and let vy,...,v, € R" with r = rank(X) such that
Xij = (vi,v;) for all 4,5 =1,...,n. Define the random variable y € {—1,1}" as follows:

yi = sign((v;, Z))

where Z is a standard Gaussian variable on R". We saw in lecture that
Elyiy;] = %arcsin(Xi') V1l<4,5<n,
which you can use without proof. Show that:
v* > ElyT Ay] = %Tr(A arcsin[X]).

where arcsin[X] is the matrix obtained by applying the arcsin function to each entry of
X, i.e., arcsin[X];; = arcsin(Xj;).
(c) Recall the Schur product theorem:

Schur product theorem: If P = 0 and @ > 0 then P ® @ = 0 where P ® Q) is
the entrywise product of P and Q.

Use the Schur product theorem (without proof) to show that if X' > 0 then arcsin[X] — X > 0.

2k
[Hint: Use the fact that arcsin(z) = > 77, 4k((2’]“€3_1)x2k+1 for x € [-1,1]].

(d) Using the positive semidefinite assumption on A show then that Tr(Aarcsin[X]) >
Tr(AX). Conclude that v* > %pgDP.

Solution:

(a) If  is feasible for (6) then X = xaT is feasible for (7) and has the same objective function.

(b) By definition of v* we know that v* > y? Ay with probability one and hence v* > E[yT Ay].
Then we have E[y” Ay] = E[Tr(Ayy™)] = Tr(AE[yy"]) = 2 Tr(A arcsin[X]).

(¢) Note that arcsin(x) — x has a series expansion with nonnegative coefficients, i.e., we can write
arcsin(z) — z = Y, ek’ where ¢, > 0 for all k € N. Thus if X > 0 we get arcsin[X] — X =
> o kX = 0 (where XOF = X © -+ ® X (k times)) since each term is positive semidefinite
by the Schur product theorem.

(d) We get v* > 2 Tr(Aarcsin[X]) > 2 Tr(AX) = 2p%p as desired.



