
Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

Example class 3

1. The chromatic number of a graph G, denoted χ(G), is the smallest number of colors that are
needed to color its vertices in such a way that no two adjacent vertices have the same color.
Show that for any graph G we have ϑ(G) ≤ χ(Ḡ) where ϑ(G) is the Lovász theta number of
G, and Ḡ is the complement graph of G.

Solution: We use the following definition of ϑ(G) from Lecture 9:

ϑ(G) = min. Z00

s.t. Zii = 1 ∀i ∈ V
Zij = 0 ∀ij ∈ Ē[
Z00 1T

1 Z

]
� 0

(1)

Assume there is a coloring of Ḡ in k colors. Define Z00 = k and the matrix Z ∈ Sn by:

Zij =

{
1 if i have j have the same colors

0 otherwise.
(2)

We claim that the pair (Z00, Z) is feasible for (1). This will show that ϑ(G) ≤ χ(Ḡ) as desired. Note
that Zij = 0 if ij ∈ Ē by definition of a coloring of Ḡ. It remains to show that the matrix

[
k 1T

1 Z

]
� 0.

Using Schur complements it is sufficient to check that Z − k−111T � 0

Note that any coloring of Ḡ with k colors induces a partition on its vertices V = S1 ∪ · · · ∪ Sk where
Sc are the vertices of V with color c ∈ {1, . . . , k}. Let 1Sc be the indicator vector for Sc. Then note

that the matrix Z defined in Equation (2) can be written as Z =
∑k
c=1 1Sc1

T
Sc

. Also note that since

the sets S1, . . . , Sk form a partition of V = {1, . . . , n} we have
∑k
c=1 1Sc

= 1. Now showing that
Z − k−111T � 0 corresponds to showing that:

k

k∑
c=1

ucu
T
c −

(
k∑
c=1

uc

)(
k∑
c=1

uc

)T
� 0 (3)

where uc = 1Sc
. Inequality (3) can be verified easily by forming the quadratic form of the left-hand

side and using Cauchy-Schwarz (the inequality is true for any family of vectors {u1, . . . , uk}). This

completes the proof.

2. Write a semidefinite program that computes the minimum, over R, of the polynomial p(x) =
x4 + 3x3 − x2 + x− 1. Implement and solve your semidefinite program using CVX.

Solution: The semidefinite program we write is

max γ : Q � 0,



Q00 = −1− γ
2Q01 = 1

2Q02 +Q11 = −1

2Q12 = 3

Q22 = 1.

More explicitly this gives

max γ :

−1− γ 1/2 a
1/2 b 3/2
a 3/2 1

 � 0, 2a+ b = −1
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We can implement this in CVX using the following code:

cvx_begin sdp

variables g a b

maximize g

subject to

[-1-g 1/2 a;

1/2 b 3/2;

a 3/2 1] >= 0;

2*a + b == -1;

cvx_end

The value we get is ≈ −17.56.

3. Show that a polynomial p ∈ R[x] satisfies p(x) ≥ 0 for all x ∈ [0,∞) if and only if there exist
s1, s2 ∈ R[x] sums-of-squares such that

p(x) = s1(x) + xs2(x)

with the following degree bounds: deg s1 ≤ 2d and deg s2 ≤ 2d− 2 if deg p = 2d (even); and
deg(s1) ≤ 2d and deg(s2) ≤ 2d if deg(p) = 2d+ 1 (odd).

Solution: We can proceed by induction on the degree d of the polynomial. If d = 0 the result
is trivial. Consider a polynomial p of degree d that satisfies p(x) ≥ 0 for all x ∈ [0,∞). Note that the
only real roots of p that are allowed to have odd multiplicity must be in (−∞, 0].

• If p has no real roots in (−∞, 0] then p is globally nonnegative and is a sum-of-squares.

• If p has a root at −a where a ≥ 0 then note that p(x)/(x + a) is still nonnegative on [0,∞).
Since p(x)/(x + a) is a polynomial of degree d − 1 we can use the induction hypothesis to say
that

p(x)/(x+ a) = s1(x) + xs2(x)

where s1, s2 are sums of squares with deg s1 ≤ 2b(d− 1)/2c and deg s1 ≤ 2d(d− 1)/2e − 2. One
can verify then that

p(x) = s̃1(x) + xs̃2(x)

where {
s̃1(x) = as1(x) + x2s2(x)

s̃2(x) = s1(x) + as2(x)

which are both sums of squares. Also note that deg s̃1 ≤ deg s2 + 2 ≤ 2d(d− 1)/2e = 2bd/2c and
deg s̃2 ≤ deg s1 ≤ 2b(d− 1)/2c = 2dd/2e − 2 as desired.

4. Let a ≤ b. Show that a polynomial p ∈ R[x] with even degree deg p = 2d satisfies p(x) ≥ 0
on [a, b] if and only if there exist s1, s2 ∈ R[x] sums-of-squares with deg s1 ≤ 2d and deg s2 ≤
2d− 2 such that

p(x) = s1(x) + (b− x)(x− a)s2(x).

When deg p = 2d+ 1 (odd) show that p(x) ≥ 0 on [a, b] if and only if there exist polynomials
s1, s2 ∈ R[x] sums-of-squares with deg s1 ≤ 2d and deg s2 ≤ 2d such that

p(x) = (x− a)s1(x) + (b− x)s2(x).

Solution: We assume [a, b] = [−1, 1] for simplicity. We prove the result by induction on the
degree d. Assume p is a polynomial of degree d nonnegative on [−1, 1]. Note that any root in (−1, 1)
must have even multiplicity.
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• If p has no real root outside (−1, 1) then deg p must be even and p is actually a sum-of-squares.

• Assume p has a real root at −r ≤ −1. Then p(x)/(x + r) is still nonnegative on [−1, 1]. Since
deg(p(x)/(x+ r)) = d− 1 we can use induction.

– If d is odd then d− 1 is even and so by the induction hypothesis we know that

p(x)/(x+ r) = s1(x) + (1− x2)s2(x)

where s1, s2 are sums of squares with deg s1 ≤ d − 1 and deg s2 ≤ d − 3. One can verify
then that

p(x) = (1− x)s̃1(x) + (1 + x)s̃2(x)

where {
s̃1(x) = (1 + x)2s2(x) + r−1

2 (s1(x) + (1 + x)2s2(x))

s̃2(x) = s1(x) + r−1
2 (s1(x) + (1− x)2s2(x))

are sums of squares. Note that deg s̃1 ≤ d− 1 and deg s̃2 ≤ d− 1 as desired.

– If d is even then d− 1 is odd and the induction hypothesis tells us that

p(x)/(x+ r) = (1− x)s1(x) + (1 + x)s2(x)

where s1, s2 are sums of squares with deg s1,deg s2 ≤ d− 2. One can verify then that

p(x) = s̃1(x) + (1− x2)s̃2(x)

where {
s̃1(x) = (1 + x)2s2(x) + r−1

2 ((x− 1)2s1(x) + (x+ 1)2s2(x))

s̃2(x) = s1(x) + r−1
2 (s1(x) + s2(x))

are sums of squares. Note that deg s̃1 ≤ d and deg s̃2 ≤ d− 2.

• If p has a real root at r ≥ 1 then by doing the change of variables x ↔ −x we can reduce it to
the previous case.

It remains to do the base case d = 0 which is trivial.

5. For p ∈ R[x] we let ‖p‖∞ = maxx∈[−1,1] |p(x)|. Given an integer n ≥ 1 we are interested
in finding the minimum of ‖p‖∞ over all monic polynomials p of degree n (recall that a
polynomial is called monic if its leading coefficient is equal to 1, where the leading coefficient
is the coefficient of the monomial xn if n = deg(p)). Show how to formulate this problem
using the cone of nonnegative polynomials, and solve it using CVX. What optimal values do
you get for different choices of n? Can you recognise the polynomial that achieves the optimal
value?

Solution: We can formulate our problem as follows:

minimise
t∈R,p0,...,pn∈R

t

subject to t+ p nonnegative on [−1, 1]
t− p nonnegative on [−1, 1]
pn = 1

(4)

where we abbreviated p for the polynomial p(x) = p0 + p1x + · · ·+ pnx
n. Using the characterisation

of nonnegative polynomials on [−1, 1] we can write this problem as, assuming n is even:

minimise t
subject to t+ p = s1 + (1− x2)s2

t− p = s̃1 + (1− x2)s̃2
pn = 1
s1, s2, s̃1, s̃2 sums of squares

(5)

This problem can be implemented in CVX as follows:
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n = 4;

cvx_begin

variable t

variable p(n+1)

variable s1(n+1)

variable s2(n-1)

variable s1t(n+1)

variable s2t(n-1)

minimize t

subject to

[zeros(n,1); t] - p == s1 + conv( [-1 ; 0 ; 1] , s2 );

[zeros(n,1); t] + p == s1t + conv( [-1 ; 0 ; 1] , s2t );

p(1) == 1; % Monic polynomial constraint -- the convention in Matlab

% is that the leading coefficient appears first

s1 == nonneg_poly_coeffs(n);

s2 == nonneg_poly_coeffs(n-2);

s1t == nonneg_poly_coeffs(n);

s2t == nonneg_poly_coeffs(n-2);

cvx_end

The solution of the problem is 1/2n−1 and the optimal polynomial p is the n’th Chebyshev polynomial.

See https://en.wikipedia.org/wiki/Chebyshev polynomials#Minimal .E2.88.9E-norm

6. Show how to formulate the cone of convex polynomials using the cone of nonnegative poly-
nomials.

Solution: A polynomial is convex if its second derivative is nonnegative everywhere. Using the
fact that

d2

dx2
p(x) =

d∑
k=2

k(k − 1)pkx
k−2

we have that p′′ is convex if and only if (2p2, 6p3, 12p4, . . . , d(d− 1)pd) ∈ Pd−2 where d = deg(p).

7. Let y = (y0, . . . , y2d) ∈ R2d+1. Show that the solution to the following problem is either −∞
or 0, and that the solution is 0 precisely when y ∈ P ∗2d:

minimise
p∈R2d+1,M∈Sd+1

〈p, y〉 s.t.
∑

0≤i,j≤d
i+j=k

Mij = pk,M � 0. (6)

Using strong duality show that y ∈ P ∗2d if and only if H(y) � 0.

Solution: The solution is zero when y ∈ P ∗2d. If y /∈ P ∗2d then by definition there is p0 ∈ P2d

such that 〈p0, y〉 < 0. But then p = tp0 is feasible for (6) for any t ≥ 0 and 〈p, y〉 → −∞ as t→ +∞.

Let’s compute the dual of (6). If we let λk be the dual variables for the equality constraints and Z
be the dual variable for the positive semidefinite constraint, the inequalities we can infer from the
constraints are

d∑
k=0

λk(pk −
∑

i,j:i+j=k

Mij) + 〈Z,M〉 ≥ 0. (7)

with Z � 0. Observe that
∑d
k=0 λk

∑
i,j:i+j=kMij = 〈H(λ),M〉 where H(λ) = [λi+j ]0≤i,j≤d. Thus

we can rewrite (7) as:
〈λ, p〉+ 〈Z −H(λ),M〉 ≥ 0.
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Since we are interested in the cost function 〈y, p〉 we want λ = y and Z −H(λ) = 0. Thus the dual
problem is

maximise 0 s.t. λ = y, Z −H(λ) = 0, Z � 0.

This problem can obviously be simplified to the following trivial problem with no variables:

maximise 0 s.t. H(y) � 0 (8)

The problem (6) can easily be shown to be strictly feasible for example by taking M = In and the

corresponding p which will be here p(x) = 1 + x2 + x4 + · · ·+ x2d. Thus, by strong duality we know

that the optimal value of (6) and (8) are equal. We know that the value of (6) is equal to 0 if and

only if y ∈ P ∗2d. The value of (8) is 0 if and only if H(y) � 0 (otherwise it is infeasible and its value is

−∞). Thus this shows that y ∈ P ∗2d if and only if H(y) � 0.

8. Find the extreme rays of the cone P2d of nonnegative univariate polynomials of degree 2d.

Solution: The extreme rays of P2d correspond to nonnegative polynomials with real roots; i.e.,
of the form p(x) =

∏k
i=1(x− ri)2mi where r1 < r2 < · · · < rk and 2m1 + 2m2 + · · ·+ 2mk = 2d.

To see that any such polynomial is extreme, assume p = p1 + p2 where p1, p2 ≥ 0. Then p1, p2 must
vanish at r1, . . . , rk; furthermore since p1, p2 ≥ 0, each ri must be a root with even multiplicity of
both p1 and p2. So we can write p1(x) =

∏k
i=1(x− ri)2q1(x) and p2(x) =

∏k
i=1(x− ri)2q2(x) for some

polynomials q1, q2 ≥ 0. Thus if we define q(x) =
∏k
i=1(x − ri)2(mi−1) we get q(x) = q1(x) + q2(x).

Using again the same idea we can keep “peeling off” terms from q until we get a constant polynomial
r = r1 + r2 with r1, r2 ≥ 0. By moving up again we see that p1 and p2 must be nonnegative multiples
of p. (Another way of writing the same argument is via induction on degree).

We now show that any other polynomial p ∈ P2d is not extreme. Let p be a nonnegative polynomial

that has at least one complex nonreal root z. We know that p(x) = q(x)(x − z)(x − z̄) for some

nonnegative polynomial q. But then if we let a = <[z] and b = =[z] then p(x) = q(x)|x − z|2 =

q(x)((x−a)2 + (x− b)2) = q1(x) + q2(x) where q1(x) = q(x)(x−a)2 and q2(x) = q(x)(x− b)2 are both

nonnegative and not multiples of q.

9. (a) Show that if p ∈ R[x1, . . . , xn] is nonnegative on Rn then it has even degree.

(b) Show that if p =
∑

k q
2
k on Rn then necessarily deg qk ≤ (deg p)/2.

Solution:

(a) Let d = deg p and write p(x) =
∑
α,|α|=d cαx

α +
∑
α:|α|<d cαx

α = p0(x) + p1(x) where p0(x)

consists of the monomials of degree exactly d and p1(x) the other monomials. Since p0 6= 0
there exists a ∈ Rn such that p0(a) 6= 0. Observe that the univariate polynomial (in t) p(ta) is
nonnegative and has degree d = deg p. This implies that d must be even.

(b) Let deg p = 2d and assume p =
∑
k q

2
k. Let D = maxk deg qk. By expanding

∑
k q

2
k we see that

it will have terms of degree 2D with positive coefficients. Thus 2D ≤ deg p = 2d.

10. (a) Show that the cone Pn,2d of nonnegative polynomials in n variables of degree 2d is a
proper cone.

(b) Show that the cone Σn,2d of sum-of-squares polynomials in n variables of degree 2d
is a proper cone. [Hint: you can use Carathéodory theorem without proof: if p ∈
cone(a1, . . . , aM ) ⊂ RD then there is a subset S of {1, . . . ,M} of size at most D such
that p ∈ cone(ai : i ∈ S)].

Solution:
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(a) By definition
Pn,2d = {p ∈ R[x]≤2d : p(x) ≥ 0 ∀x ∈ Rn} .

For each x ∈ Rn, the set Hx = {p ∈ R[x]≤2d : p(x) ≥ 0} is a closed halfspace. Thus Pn,2d is
closed and convex as an intersection of closed convex sets. It is pointed because if p ∈ Pn,2d and
p ∈ −Pn,2d then p(x) = 0 for all x ∈ Rn which implies that p is the zero polynomial. Finally
one can check that it has nonempty interior by verifying that p(x) = x2d1 + · · ·+x2dn + 1 is in the
interior. To be precise consider the following norm defined on the space of polynomials of degree
at most 2d:

‖q‖ =
∑
|α|≤2d

|qα|.

In other words, this is the `1 norm of the coefficients of q. We will now show that if ‖q‖ ≤ 1 then
p + q ∈ Pn,2d where p(x) = x2d1 + · · · + x2dn + 1. Let thus q such that ‖q‖ ≤ 1. Let x ∈ Rn and
assume that |xi| ≤ 1 for all i = 1, . . . , n. Then

p(x) + q(x) = x2d1 + · · ·+ x2dn + 1 +
∑
|α|≤2d

qαx
α

≥ x2d1 + · · ·+ x2dn + 1−
∑
|α|≤2d

|qα||xα|

≥ x2d1 + · · ·+ x2dn + 1−
∑
|α|≤2d

|qα|

≥ x2d1 + · · ·+ x2dn ≥ 0

where in second inequality we used the fact that maxi |xi| ≤ 1 and in the third inequality we used
that ‖q‖ ≤ 1. Assume now that there is at least one i such that |xi| ≥ 1. Let j = argmaxi |xi|
and note that for any α with |α| ≤ 2d we have |xαx−2dj | ≤ 1. This allows us to write:

p(x) + q(x) = x2d1 + · · ·+ x2dn + 1 +
∑
|α|≤2d

qαx
α

= x2dj

1 +
∑
i 6=j

x2di x
−2d
j + x−2dj +

∑
|α|≤2d

qαx
αx−2dj


≥ x2dj

1 +
∑
i 6=j

x2di x
−2d
j + x−2dj −

∑
|α|≤2d

|qα||xα||x−2dj |


≥ x2dj

1 +
∑
i 6=j

x2di x
−2d
j + x−2dj −

∑
|α|≤2d

|qα|


≥ 0

This proves that p+ q is nonnegative everywhere which is what we wanted.1

(b) Showing that Σn,2d is convex and pointed is easy. We need to show that it is closed and has
nonempty interior.

– Closedness: For convenience we define the following norm on the space of polynomials:

‖q‖ = max
‖x‖2≤1

|q(x)|.

1The reason this proof is a bit lengthy is that we are working with nonhomogeneous polynomials. When working
with homogeneous polynomials, showing that the cone has nonempty interior is much easier, by simply considering
the polynomial (x2

1 + · · ·+ x2
n)

d and the norm ‖q‖ = max‖x‖2=1 |q(x)|.
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It is easy to check that it defines a norm on polynomials. Let (pk) be a sequence of poly-
nomials in Σn,2d that converges to p. We need to show that p ∈ Σn,2d. For each k we can
write:

pk =

N∑
i=1

q2ki (9)

where qki ∈ R[x]≤d and N = dimR[x]≤2d (by Carathéodory theorem). Let i ∈ {1, . . . , N}
and consider the sequence of polynomials (qki)k∈N. Note that from (9) we get that q2ki(x) ≤
pk(x) for all x ∈ Rn. Since (pk)k∈N is a bounded sequence (since it is convergent) we can
find some M > 0 such that ‖pk‖ ≤M for all k and so we get that for all k, ‖qki‖ ≤

√
M , i.e.,

(qki)k∈N is bounded. We can thus extract from it a convergent subsequence that converges

to some qi ∈ R[x]≤d. Taking limits in (9) we get p =
∑N
i=1 q

2
i as desired.

– Nonempty interior: We know that Σn,2d has the following semidefinite characterization:

Σn,2d = π(S
s(n,d)
+ )

where
π(Q)γ =

∑
α,β:α+β=γ

Qα,β ∀γ : |γ| ≤ 2d.

The map π : Ss(n,d) → R[x]≤2d can easily be seen to be surjective. Thus this implies that
if B is any ball Ss(n,d) with nonempty interior then its image under π will have nonempty
interior. From this observation we can see that π(I) (where I is the identity matrix in

Ss(n,d)) lives in the interior of Σn,2d, because I is in the interior of S
s(n,d)
+ .

11. (Based on [Ble15]) Let s(x) = x1 + · · ·+ xn.

(a) Show that the function f(x) = (n− s(x))(n− 2− s(x)) is nonnegative on {−1, 1}n.

(b) Show that f is not 1-sos on {−1, 1}n.

(c) Show that f is 2-sos on {−1, 1}n [Hint: what is (1− xi − xj + xixj)
2? ]

Solution:

(a) The function s(x) can only take values n, n− 2, n− 4, . . . ,−n on {−1, 1}n. Thus it follows that
f(x) ≥ 0 for all x ∈ {−1, 1}n.

(b) Assume f(x) =
∑
k qk(x)2 where qk(x) are of degree 1, i.e., qk(x) = ak1x1 + · · · + aknxn + bk.

Since f(x) = 0 for x = (1, . . . , 1) we must have ak1 + · · ·+ akn + bk = 0 for all k. Similarly note
that f(x) = 0 whenever x has exactly one component equal to −1 and so this tells us that for
any k, ε1ak1 + · · ·+ εnakn + bk = 0 where ε ∈ {−1, 1}n has exactly one component equal to −1.
For any fixed k this gives us n + 1 linear equations in the ak1, . . . , akn, bk and it is easy to see
that they imply ak1 = · · · = akn = bk = 0 for all k. But f is not the all-zero function and so we
get a contradiction.

(c) If we expand f(x) in the square-free monomial basis we get

f(x) = n(n− 1)− 2(n− 1)s(x) + 2
∑

1≤i<j≤n

xixj .

For any i < j we have (1 − xi − xj + xixj)
2 = 4(1 − xi − xj + xixj). Thus it is easy to verify

that we have

f(x) =
1

2

∑
1≤i<j≤n

(1− xi − xj + xixj)
2.
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