1 Review of convexity

Definition 1.1. A set $C \subseteq \mathbb{R}^n$ is called *convex* if for any $x, y \in C$ and $\lambda \in [0, 1], \lambda x + (1 - \lambda)y \in C$.

Some examples of convex sets:

- Halfspaces: $\{x \in \mathbb{R}^n : \langle a, x \rangle \leq b\}$ where $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$.
- The disk in \mathbb{R}^2 : $\{(x, y) : x^2 + y^2 \le 1\}$.
- The nonnegative orthant: $\{x \in \mathbb{R}^n : x_1 \ge 0, \dots, x_n \ge 0\}$.
- Nonnegative polynomials: $\{(a_0, \ldots, a_n) \in \mathbb{R}^{n+1} : a_0 + a_1x + \cdots + a_nx^n \ge 0 \ \forall x \in \mathbb{R}\}.$

Proposition 1.1 (Operations that preserve convexity). *The following operations preserve convexity.*

- If C is a convex set in \mathbb{R}^n and $A: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map then A(C) is convex.
- If C_1, C_2 are convex then $C_1 \cap C_2$ are convex.
- If $C \subseteq \mathbb{R}^n$ convex then $\{(x,t) \in \mathbb{R}^n \times \mathbb{R} : t > 0 \text{ and } x/t \in C\} \subseteq \mathbb{R}^{n+1}$ is convex.

Theorem 1.1 (Separating hyperplane theorem). Assume $C \subseteq \mathbb{R}^n$ is a convex subset of \mathbb{R}^n , and $y \in \mathbb{R}^n$ with $y \notin C$. Then there exists $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$ such that

$$\langle a, y \rangle \ge b$$
 and $\langle a, x \rangle \le b$ for all $x \in C$. (1)

Furthermore, if C is closed, the inequalities in (1) can be made strict.

Proof. We give the proof when C is closed. The general case is left as an exercise. If C is closed we can define the projection map on C, namely $p_C(y) := \min\{||y - x|| : x \in C\}$ is well defined and satisfies $\langle y - p_C(y), x - p_C(y) \rangle \leq 0$ for any $x \in C$. Let $a = y - p_C(y)$ and $b = \langle a, p_C(y) \rangle + \frac{1}{2} ||a||_2^2$. Note that $\langle a, y \rangle - b = ||a||_2^2 - \frac{1}{2} ||a||_2^2 > 0$. Also for any $x \in C$ we have $\langle a, x \rangle - b = \langle y - p_C(y), x - p_C(y), x - p_C(y) \rangle - \frac{1}{2} ||a||_2^2 < 0$ which is what we wanted.

Supporting hyperplane An important application of the separating hyperplane theorem when C is not closed is to prove the existence of *supporting hyperplanes*: If C is a closed convex subset of \mathbb{R}^n and y is a point on the boundary $C \setminus int(C)$ of C, a supporting hyperplane of C at y is a hyperplane $H = \{x \in \mathbb{R}^n : \langle a, x \rangle = b\}$ such that $y \in H$ and $\langle a, x \rangle \leq b$ for all $x \in C$.

Definition 1.2 (Convex hull). Assume $S \subseteq \mathbb{R}^n$. The *convex hull* of S, denoted conv(S), is the smallest convex set containing S, i.e.,

$$\operatorname{conv}(S) := \bigcap_{\substack{C \text{ convex}\\S \subseteq C}} C.$$

Definition 1.3 (Face). Let $C \subseteq \mathbb{R}^n$ be a convex set. A subset F of C is called a *face* of C if the following two conditions hold:

1. F is convex

2. For any $x \in F$, if $a, b \in C$ and $0 < \lambda < 1$ are such that $x = \lambda a + (1 - \lambda)b$, then $a, b \in F$.

Definition 1.4 (Extreme point). Let $C \subseteq \mathbb{R}^n$ be a convex set. A point $x \in C$ is called *extreme* if the singleton $\{x\}$ is a face of C.

Definition 1.5 (Dimension). Let $C \subseteq \mathbb{R}^n$ be a convex set. We define the *dimension* of C to be the dimension of the smallest affine space that contains C. We say that C is *full-dimensional* if it has dimension n.

Recall:

- An affine subspace of \mathbb{R}^n is, by definition, a translate of a linear subspace, i.e., a set of the form x + V where $x \in \mathbb{R}^n$ and V is a linear subspace of \mathbb{R}^n . The dimension of an affine subspace is the dimension of the corresponding linear subspace V.
- An affine combination of two points $x, y \in \mathbb{R}^n$ is a combination of the form $\lambda x + (1 \lambda)y$ where λ is an arbitrary real number (not necessarily nonnegative). Affine subspaces are closed under affine combinations.

Proposition 1.2. Let $C \subset \mathbb{R}^n$ be a convex set with nonempty interior.

- (i) If $F \subseteq G \subseteq C$ where F is a face of G and G a face of C, then F is a face of C.
- (ii) Assume C is closed. Then any point $x \in C \setminus int(C)$ lies on a face F of C of dimension strictly smaller than n.

Proof. Item (i) is easy to verify. For item (ii) we use the separating hyperplane theorem. Since $x \notin \operatorname{int}(C)$ we can find a hyperplane that separates x from $\operatorname{int}(C)$, i.e., $\langle a, x \rangle = b$ and $\langle a, x \rangle \leq b$ for any $x \in \operatorname{int}(C)$. Define $F = C \cap \{z \in \mathbb{R}^n : \langle a, z \rangle = b\}$. It is easy to verify that F satisfies the conditions that we want: namely F is a face of dimension at most n-1 that contains x. This completes the proof.

Theorem 1.2 (Minkowski theorem). Let C be a closed and bounded convex subset of \mathbb{R}^n . Let ext(C) be the set of extreme points of C. Then C = conv(ext(C)).

Proof. The inclusion $C \supseteq \operatorname{conv}(\operatorname{ext}(C))$ is clearly true. We have to show that $C \subseteq \operatorname{conv}(\operatorname{ext}(C))$, namely that any point in C can be written as a convex combination of elements in $\operatorname{ext}(C)$. We proceed by induction on the dimension of C. The claim is clearly true if C is a point (zerodimensional). Assume C is a convex subset of \mathbb{R}^n of dimension k. By considering the affine space of dimension k that contains C, we can think of C as a full-dimensional convex set in \mathbb{R}^k . Let v be an arbitrary vector in \mathbb{R}^k and consider the line $L = \{x + \alpha v, \alpha \in \mathbb{R}\}$. Since C is closed and bounded we know that $C \cap L$ is a segment; let x_1, x_2 be its two extreme points and note that $x \in \operatorname{conv}(\{x_1, x_2\})$. Observe that $x_1, x_2 \in C \setminus \operatorname{int}(C)$. Thus by Proposition 1.2(ii) they lie on low-dimensional faces F_1 and F_2 of C. By using the induction hypothesis on $x_i \in F_i$ (for i = 1, 2) we know that x_i is a convex combination of the extreme points of F_i . By Proposition 1.2(i) we know that the extreme points of F_i are extreme points of C. Thus since x_1 and x_2 are convex combinations of extreme points of C, and x is a convex combination of $\{x_1, x_2\}$ the claim follows.