
Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

12 Nonnegative univariate polynomials (continued)

SDP representation of P ∗2d: Recall that we have derived in Lecture 10 a semidefinite program-
ming representation of P2d. We are now going to derive a semidefinite representation of the dual
cone P ∗2d. To do this let us go back to our setting where we have a random variable X on R.
Since nonnegative polynomials are sums of squares, saying that E[p(X)] ≥ 0 for all nonnegative
polynomials of degree ≤ 2d is the same as saying that E[q(X)2] ≥ 0 for all polynomials q of degree
at most d. If q(X) =

∑d
k=0 qkX

k then

E[q(X)2] =
∑

0≤i,j≤d
qiqjE[Xi+j ] =

∑
0≤i,j≤d

qiqjyi+j = qTH(y)q

where H(y) = [yi+j ]0≤i,j≤d is the Hankel matrix associated to y:

H(y) =


y0 y1 . . . yd
y1 . . . yd yd+1
...
... . . . . . . y2d−1
yd yd+1 . . . y2d

 = [yi+j ]0≤i,j≤d . (1)

Thus saying that E[q(X)2] ≥ 0 for all polynomial q of degree at most d is the same as saying that
qTH(y)q ≥ 0 for all q ∈ Rd+1 which is equivalent to saying H(y) � 0. We thus get the following
semidefinite programming description of P ∗2d:

Theorem 12.1. P ∗2d =
{

(y0, . . . , y2d) ∈ R2d+1 : H(y) � 0
}

where H(y) ∈ Sd+1 is defined as in (1).

Proof. We write a formal proof which captures the argument we just gave. Since P2d coincides with
polynomials that are sums of squares, we have y ∈ P ∗2d if and only if 〈p, y〉 ≥ 0 for all polynomials

p of the form p = q2 where q is an arbitrary polynomial of degree ≤ d. If q(x) =
∑d

k=0 qkx
k then

the coefficients of the polynomial p = q2 are pk =
∑

0≤i,j≤d:i+j=k qiqj . Thus

〈q2, y〉 ≥ 0 ⇐⇒
∑

0≤i,j≤d
qiqjyi+j = qTH(y)q ≥ 0.

Thus having 〈q2, y〉 ≥ 0 for all q of degree at most d is equivalent to having H(y) � 0. This
completes the proof.

Remark 1. We can also prove Theorem 12.1 using the semidefinite representation of P2d proved
in Theorem 10.3. In Theorem 10.3 we showed that P2d = π(Sd+1

+ ) where π : Sd+1 → R2d+1 is the
linear map:

π(M) =

 ∑
0≤i,j≤d
i+j=k

Mij


k=0,...,2d

(2)

It is easy to prove that if π is a linear map and K any arbitrary set then (π(K))∗ = {y : π∗(y) ∈ K∗}
where π∗ is the adjoint of π (we leave it as an exercise). The adjoint of the map π defined in (2)
turns out to be the Hankel map defined in (1). This gives us another proof of Theorem 12.1.
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Finding an atomic measure associated to a sequence of moments, and connections with
quadrature formulas From Theorem 12.1 we know that if H(y) � 0 then y is in the interior of
P ∗2d and so (from Lecture 11) it can be written as a conic combination of elements from the moment
curve M2d = {yx : x ∈ R}, i.e.,

y =

r∑
i=1

λiyxi (3)

where λi ≥ 0, xi ∈ R. One question is: how can we find such a conic combination? The purpose
of this paragraph is to draw a connection with quadrature rules for integration. In a typical
quadrature problem we are given a measure µ and we are looking for points x1, . . . , xr ∈ R and
weights λ1, . . . , λr > 0 such that ∫

p(x)dµ(x) =
r∑

i=1

λip(xi) (4)

holds for all polynomials p up to some degree, say 2d. The Gaussian quadrature approach to this
problem is to define an inner product in the space of polynomials given by 〈p|q〉 =

∫
pqdµ and

consider the sequence of orthogonal polynomials with respect to this inner product; the Gaussian
quadrature nodes xi in (4) then correspond to the roots of the polynomial of degree d of the
sequence of orthogonal polynomials (the quadrature rule will have r = d + 1 nodes). Observe
that the requirement (4) is the same as (3) where yk =

∫
xkdµ(x). Using this identification,

the condition H(y) � 0 has a natural interpretation in terms of the inner product 〈p|q〉 we just
defined: it simply means that this inner product is a valid (positive definite) inner product on
the space of polynomials of degree at most d. Indeed for any p, q of degree at most d we have
〈p|q〉 =

∫
(
∑d

i=0 pix
i)(
∑d

j=0 qjx
j)dµ(x) =

∑d
i,j=0 piqj

∫
xi+jdµ(x) = pTH(y)q (where we identified

p and q with their coefficient vector in the last equality). The inner product 〈·|·〉 is thus a valid one
provided H(y) � 0.

Nonnegativity on intervals So far we have looked at polynomials nonnegative on the real line.
What if we are interested in polynomials nonnegative on an interval? The following result (which
is left as an exercise to the reader) gives necessary and sufficient conditions for a polynomial to be
nonnegative on [−1, 1].

Theorem 12.2 (Nonnegative polynomials on [−1, 1]). A polynomial p of even degree 2d is non-
negative on [−1, 1] if and only if there exist s1 ∈ P2d and s2 ∈ P2d−2 such that p(x) = s1(x) + (1−
x2)s2(x).

A polynomial p of odd degree 2d+ 1 is nonnegative on [−1, 1] if and only if there exist s1 ∈ P2d

and s2 ∈ P2d such that p(x) = (1− x)s1(x) + (1 + x)s2(x).

Let P2d[−1, 1] be the cone of polynomials of degree 2d nonnegative on [−1, 1]. The previous
theorem shows that

P2d[−1, 1] =
{
p = (p0, . . . , p2d) : ∃s1 ∈ P2d, s2 ∈ P2d−2 s.t. p = s1 + (1− x2)s2

}
.

It is important to note that the constraint p = s1 + (1−x2)s2 is linear in (p, s1, s2) (x is just an in-
determinate). Using the semidefinite representation of P2d we can get a semidefinite representation
of P2d[−1, 1]. For example the problem

min
x∈[−1,1]

p(x) = max γ : p− γ ∈ P2d[−1, 1] (5)
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can be expressed as a semidefinite program. The same is true for P2d+1[−1, 1] (polynomials of
degree 2d+ 1 nonnegative on [−1, 1]).

Example: The following code implements the problem (5) on CVX (we use CVX’s built-in
function nonneg poly coeffs(2*d) which internally represents the cone P2d using the semidefinite
representation of Theorem 10.2).

% Find the minimum of p(x) on [-1,1]

% p(x) = 4x^4 + 3x^3 - 2*x^2 + 2

p = [4 3 -2 0 2]’;

d = (length(p)-1)/2;

cvx_begin

variable g % gamma

variable s1(2*d+1) % polynomial of degree 2d

variable s2(2*d-1) % polynomial of degree 2d-2

maximize g

subject to

% p(x) - gamma = s_1(x) + (1-x^2)*s_2(x)

p - [zeros(2*d,1); g] == s1 + conv( [-1 ; 0 ; 1] , s2 );

s1 == nonneg_poly_coeffs(2*d); % s_1 \in P_{2d}

s2 == nonneg_poly_coeffs(2*d-2); % s_2 \in P_{2d-2}

cvx_end

Application: probability inequalities [BP05] We now briefly explain an application of non-
negative univariate polynomials for probability inequalities, due to [BP05]. Assume we have a
random variable X of which we know only its first 2d moments (y0, . . . , y2d). We want to use
these moments to derive an upper bound on the probability of an event, say Pr[X ∈ A] where A
is a subset of R. An example of such an upper bound is Chebyshev’s inequality which says that
Pr[|X| ≥ t] ≤ E[X2]/t2 for any parameter t > 0. Let yk = E[Xk] (k = 0, . . . , 2d) be the moments
of X which we assume are given and consider the optimization problem:

minimise
p∈R2d+1

2d∑
k=0

pkyk subject to

2d∑
k=0

pkx
k ≥ 1A(x) ∀x ∈ R (6)

where 1A is the indicator function of A:

1A(x) =

{
1 if x ∈ A
0 else.

It is not difficult to show that (6) gives an upper bound on Pr[X ∈ A]. Indeed note that Pr[X ∈
A] = E[1A(X)] ≤ E[p(X)] =

∑2d
k=0 pkyk where we used the constraint that p ≥ 1A in (6), where

p(x) =
∑2d

k=0 pkx
k. Now if, for example A = [−1, 1], then the constraint p ≥ 1A is equivalent to the

following two constraints: p−1 ∈ P2d[−1, 1] and p ∈ P2d. Since P2d[−1, 1] and P2d have semidefinite
representation, this allows us to formulate (6) as a semidefinite program when A = [−1, 1]. A similar
formulation can be obtained more generally when A is a finite union of intervals.
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