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16 Sums of squares on the hypercube (continued)

Let Hn = {−1, 1}n and let h(n, k) =
(
n
0

)
+ · · ·+

(
n
k

)
be the dimension of the space of polynomials

of degree at most k on Hn. Define Σ2k(Hn) be the cone of polynomials in {−1, 1}n that are k-sos:

Σ2k(Hn) =

(pS) S⊆[n]
|S|≤2k

s.t.
∑
S⊆[n]
|S|≤2k

pSx
S is k-sos

 . (1)

Σ2k(Hn) is a proper cone living in the space of polynomials of degree at most 2k in {−1, 1}n, which
has dimension h(n, 2k). We saw last lecture that

Σ2k(Hn) = π(S
h(n,k)
+ )

where π is the projection map

π(Q)S =
∑

U,V⊆[n]
|U |,|V |≤k
U4V=S

QU,V ∀S ⊆ [n], |S| ≤ 2k. (2)

The following proposition gives an expression for the dual of Σ2k(Hn):

Proposition 16.1. The dual cone of Σ2k(Hn) is

Σ2k(Hn)∗ =

{
(yS) S⊆[n]

|S|≤2k
s.t.

[
yU4V

]
|U |,|V |≤k

positive semidefinite

}
. (3)

Proof. Since Σ2k(Hn) is given as the projection of a positive semidefinite cone (of which we know
the dual) we are going to use the following very simple lemma:

Lemma 16.1. For any linear map π : Rn → Rm and set X we have (π(X))∗ = {y ∈ Rm : π∗(y) ∈
X∗}.

Proof. We first show ⊆: if y ∈ (π(X))∗ then 〈y, π(x)〉 ≥ 0 for all x ∈ X and so π∗(y) ∈ X∗.
Conversely, if π∗(y) ∈ X∗ then 〈π∗(y), x〉 ≥ 0 for all x ∈ X and so 〈y, π(x)〉 ≥ 0 for all x ∈ X which
means that y ∈ (π(X))∗.

Now to compute the dual of Σ2k(Hn) we just need to compute the adjoint of π defined in (2).
Since π : Sh(n,k) → Rh(n,2k), the adjoint is a linear map π∗ : Rh(n,2k) → Sh(n,k) and it must satisfy
for any y ∈ Rh(n,2k) and Q ∈ Sh(n,k):

〈π∗(y), Q〉 = 〈y, π(Q)〉.

Note that
〈y, π(Q)〉 =

∑
|S|≤2k

ySπ(Q)S =
∑
|S|≤2k

∑
U,V⊆[n]
|U |,|V |≤k
U4V=S

ySQU,V

=
∑

U,V⊆[n]
|U |,|V |≤k

yU4VQU,V = 〈Y,Q〉
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where Y = [yU4V ]|U |,|V |≤k. Thus we have

π∗(y) =
[
yU4V

]
|U |,|V |≤k

.

Combining Lemma 16.1 with the expression for π∗ and the fact that the positive semidefinite cone
is self-adjoint we get (3) as desired.

Remark 1 (Interpretation in terms of moments of measures on the hypercube). If µ is a probability
measure on Hn, we can consider its moments: yS = Eµ[xS ] = Eµ[

∏
i∈S xi] for S ⊆ [n]. In this case,

the matrix π∗(y) =
[
yU4V

]
|U |,|V |≤k

is nothing but Eµ
[
m(x)m(x)T

]
� 0 where m(x) = [xS ]|S|≤k.

Application: maximum cut problem Recall the maximum cut problem, which consists in
finding the cut with the largest value in a graph G = (V,E). In Lecture 8 we formulated this
problem as:

maximise xTLGx
subject to x ∈ {−1, 1}n (4)

where

xTLGx =
1

2

∑
ij∈V

wij(xi − xj)2

is the Laplacian of G. Problem (4) has the same optimal value as:

minimise γ
subject to γ − xTLGx nonnegative on {−1, 1}n (5)

We can define a hierarchy of semidefinite relaxations for the maximum cut problem via:

vk = min γ : γ − xTLGx is k-sos on {−1, 1}n. (6)

One can verify that v1 ≥ v2 ≥ · · · ≥ vn = maxcut(G) where maxcut(G) is the value of the maximum
cut (i.e., the optimal value of (4)). The equality vn = maxcut(G) follows from the fact that any
nonnegative function on {−1, 1}n is n-sos (see second bullet point of Example 15.1). Let us compute
the dual of the problem that defines vk. First note that vk can be expressed as:

vk = min
γ∈R

γ : γ − xTLGx ∈ Σ2k(Hn). (7)

Let y ∈ Σ2k(Hn)∗ be our dual variable. For any such y and feasible γ ∈ R of (7) we have:

〈y, γ − xTLGx〉 ≥ 0. (8)

It is important to note that x in Equation (8) plays the role of an indeterminate. The coefficients
of γ − xTLGx in the basis of square-free monomials are given by:

S = ∅ : γ − Tr(LG)

S = {i} (i ∈ [n]) : 0

S = {i, j} (i 6= j) : −2(LG)ij

This implies that:

〈y, γ − xTLGx〉 = y∅(γ − Tr(LG))− 2
∑

1≤i<j≤n
y{i,j}(LG)ij
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The objective function of (7) was γ. Thus for any y ∈ Σ2k(Hn)∗ satisfying y∅ = 1 we have the
following lower bound on the optimal value of (7):

γ ≥ y∅Tr(LG) + 2
∑

1≤i<j≤n
y{i,j}(LG)ij .

Note that the right-hand side of the inequality above can be rewritten as:∑
1≤i,j≤n

y{i}4{j}(LG)ij

The dual problem of (7) consists in finding the best lower bound, and so the dual problem is:

max
∑

1≤i,j≤n
y{i}4{j}(LG)ij s.t.

[
yU4V

]
|U |,|V |≤k

� 0, y∅ = 1. (9)

Case k = 1: Let us look at the problem (9) when k = 1. This can be written as:

max
y1,...,yn
yij (i<j)

∑
1≤i,j≤n

y{i}4{j}(LG)ij s.t.


1 y1 y2 . . . yn
y1 1 y12 . . . y1n
y2 y12 1 . . . y2n
...

. . .
...

yn y1n y2n . . . 1

 � 0. (10)

Note that the variables y1, . . . , yn do not play a role in the objective function. It is not difficult to
show that (10) has the same optimal value as:

max
yij(i<j)

∑
1≤i,j≤n

y{i}4{j}(LG)ij s.t.


1 y12 . . . y1n
y12 1 . . . y2n
...

. . .
...

y1n y2n . . . 1

 � 0. (11)

Indeed: first note that if {yi (i = 1, . . . , n), yij (1 ≤ i < j ≤ n)} is feasible for (10) then {yij (1 ≤
i < j ≤ n)} is feasible for (11) and has the same objective function value. Conversely, if {yij}
is feasible for (11) then letting y1 = · · · = yn = 0 we get a feasible point of (10) with the same
objective function value. This shows that (10) and (11) have the same optimal value. Observe that
(11) is exactly the semidefinite relaxation we defined in Lecture 8 for the maximum cut:

max Tr(LGY ) s.t. Y � 0, Yii = 1 ∀i = 1, . . . , n.
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