2 Review of convexity (continued)

We saw last time that any closed bounded convex set in \mathbb{R}^n is the convex hull of its extreme points (Minkowski's theorem). In the next theorem we show that any closed convex set can be expressed as an intersection of halfspaces.

Theorem 2.1. Assume C is a closed convex subset of \mathbb{R}^n . Then C is the intersection of all halfspaces that contain it, i.e., we have

$$C = \bigcap_{\substack{H \text{ halfspace} \\ C \subset H}} H. \tag{1}$$

Proof. This is a direct application of the separating hyperplane theorem. Let the right-hand side of (1) be D. It is trivial that $C \subseteq D$. To show that $D \subseteq C$ we proceed by contrapositive, i.e., we will show that if $x \notin C$ then $x \notin D$. If $x \notin C$ by the separating hyperplane theorem there exists $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$ such that $\langle a, z \rangle < b$ for $z \in C$ and $\langle a, x \rangle > b$ (we used here a *strict* version of the separating hyperplane theorem which holds when C is closed). If we call H the halfspace $H = \{z \in \mathbb{R}^n : \langle a, z \rangle \leq b\}$ we have $C \subseteq H$. Thus by definition of D we have $D \subseteq H$. Since $x \notin H$ it follows $x \notin D$ which is what we wanted.

Summary: We have thus seen that any closed and bounded convex subset of \mathbb{R}^n has two dual descriptions: an "internal" description as a convex hull of points (Minkowski's theorem); and an "external" description as an intersection of halfspaces (Theorem 2.1). This is a manifestation of duality theory in convex analysis/geometry.

Definition 2.1 (Cone). A set $K \subseteq \mathbb{R}^n$ is called a *cone* if for any $x \in K$ and $\lambda \geq 0$ we have $\lambda x \in K$. The cone is called *pointed* if $K \cap (-K) = \{0\}$.

Note that a cone K is *convex* if and only if for any $x, y \in K$, $x + y \in K$. A *conic combination* of a set of vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ is a linear combination of the form $\lambda_1 v_1 + \cdots + \lambda_n v_n$ where $\lambda_1, \ldots, \lambda_k$ are nonnegative. Examples of convex cones:

- Nonnegative orthant: $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_i \ge 0 \ \forall i = 1, \dots, n\}.$
- "Ice-cream cone": $\mathbf{Q}^{n+1} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : ||x||_2 \le t\}.$

We now define extreme rays of cones, which play the same role as extreme points for bounded closed convex sets.

Definition 2.2 (Extreme ray of a cone). An extreme ray of a cone $K \subseteq \mathbb{R}^n$ is a subset $S \subseteq K$ of the form $S = \mathbb{R}_+ v = \{\lambda v : \lambda \geq 0\}$ where $v \neq 0$ that satisfies the following: for any $x, y \in K$ if $x + y \in S$ then $x, y \in S$.

We will sometimes abuse notation and say that a vector $v \in K \setminus \{0\}$ is an extreme ray of K if \mathbb{R}_+v is an extreme ray of K.

Definition 2.3 (Conical hull). Let $S \subseteq \mathbb{R}^n$. The *conical hull* of S is the smallest convex cone that contains S, i.e.,

$$S = \bigcap_{\substack{K \text{ convex cone} \\ S \subseteq K}} K = \left\{ x \in \mathbb{R}^n : \exists k \in \mathbb{N}_{\geq 1}, s_1, \dots, s_k \in S, \lambda_1, \dots, \lambda_k \in \mathbb{R}_{\geq 0} \text{ s.t. } x = \sum_{i=1}^k \lambda_i s_i \right\}.$$

Minkowski's theorem for cones can then be stated as:

Theorem 2.2 (Minkowski's theorem for closed convex pointed cones). Assume K is a closed and pointed convex cone in \mathbb{R}^n . Then K is the conical hull of its extreme rays, i.e., any element in K can be expressed as a conic combination of its extreme rays.

Proof. See Exercise sheet 1. \Box

Definition 2.4 (Dual cone). If K is a cone in \mathbb{R}^n the dual cone K^* is defined as:

$$K^* = \{ y \in \mathbb{R}^n : \langle y, x \rangle \ge 0 \ \forall x \in K \}$$
 (2)

Theorem 2.3. Let K be a cone in \mathbb{R}^n . Then K^* is a closed convex cone. Furthermore if K itself is closed and convex then $(K^*)^* = K$.

Proof. Note that K^* can be expressed as

$$K^* = \bigcap_{x \in K} \underbrace{\{y \in \mathbb{R}^n : \langle y, x \rangle \ge 0\}}_{H_x}.$$

Each H_x is a closed halfspace, thus K^* is closed and convex as an intersection of closed convex sets. The proof that $(K^*)^* = K$ when K is closed and convex is similar to the proof of Theorem 2.1. We leave it as an exercise.