
Topics in Convex Optimisation (Michaelmas 2018) Lecturer: Hamza Fawzi

3 The positive semidefinite cone - Conic programming

In this course we will focus a lot of our attention on the positive semidefinite cone. Let Sn denote
the vector space of n× n real symmetric matrices. Recall that by the spectral theorem any matrix
A ∈ Sn is diagonalisable in an orthonormal basis and has real eigenvalues. Let Sn

+ (resp. Sn
++)

denote the set of positive semidefinite matrices, i.e., the set of real symmetric matrices having
nonnegative (resp. strictly positive) eigenvalues. For a matrix A ∈ Sn

+ we will use the following
convenient notations:

A � 0 ⇐⇒ A positive semidefinite

and
A � 0 ⇐⇒ A positive definite.

Proposition 3.1. Let A ∈ Sn. The following conditions are equivalent:

(i) A ∈ Sn
+

(ii) The eigenvalues of A are nonnegative

(iii) xTAx ≥ 0 for all x ∈ Rn

(iv) There exists L ∈ Rn×n lower triangular such that A = LLT (Cholesky factorization)

(v) All the principal minors of A are nonnegative, i.e., detA[S, S] ≥ 0 for any nonempty S ⊆
{1, . . . , n} where A[S, S] is the submatrix of A consisting of the rows and columns indexed by
S (Sylvester criterion)

Also the following are all equivalent:

(i) A ∈ Sn
++

(ii) The eigenvalues of A are strictly positive

(iii) xTAx > 0 for all x ∈ Rn \ {0}

(iv) There exists L ∈ Rn×n lower triangular with Lii > 0 for all i = 1, . . . , n such that A = LLT

(Cholesky factorization)

(v) All the leading principal minors of A are positive, i.e., detA[{1, . . . , k}, {1, . . . , k}] > 0 for all
k = 1, . . . , n (Sylvester criterion)

Proof. We leave it as an exercise to the reader.

Theorem 3.1. Sn
+ is a closed pointed convex cone in Sn with interior Sn

++.

Proof. That Sn
+ is closed and convex follows from

Sn
+ = {A ∈ Sn : xTAx ≥ 0 ∀x ∈ Rn} =

⋂
x∈Rn

{A ∈ Sn : xTAx ≥ 0}︸ ︷︷ ︸
Hx

.
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Hx is a closed halfspace in Sn for any fixed x thus Sn
+ is closed and convex as an intersection of

closed halfspaces. To show that Sn
+ is pointed we need to show that (Sn

+) ∩ (−Sn
+) = {0}. This is

easy to see because if A ∈ Sn
+ ∩ (−Sn

+) then all the eigenvalues of A must be equal to zero which
means that A = 0. It remains to show that int(Sn

+) = Sn
++. To do so we first define the spectral

norm of a matrix A ∈ Sn as:

‖A‖ = max
x∈Rn:‖x‖2=1

‖Ax‖2 = max {−λmin(A), λmax(A)} .

Note that this is the `2 → `2 induced norm. We now show that int(Sn
+) = Sn

++.

• We first show the inclusion int(Sn
+) ⊆ Sn

++. If A ∈ int(Sn
+) then there exists small enough

ε > 0 such that ‖A − X‖ ≤ ε ⇒ X ∈ Sn
+. Let X = A − εI where I is the n × n identity

matrix, and note that ‖A − X‖ = ‖εI‖ ≤ ε. It thus follows that X = A − εI ∈ Sn
+. Since

the eigenvalues of A− εI are the (λi− ε) (where (λi) are the eigenvalues of A) it follows that
λi ≥ ε > 0 and thus A is positive definite, i.e., A ∈ Sn

++.

• We now prove the reverse inclusion Sn
++ ⊆ int(Sn

+). Let A ∈ Sn
++. Let λmin > 0 be the

smallest eigenvalue of A and define the spectral norm ball B = {M ∈ Sn : ‖M−A‖ ≤ λmin/2}.
We will show that the ball B is included in Sn

+ which will establish our claim. Let M such
that ‖M−A‖ ≤ λmin/2. Then this means that for any x with ‖x‖ = 1, xT (A−M)x ≤ λmin/2
and so xTMx ≥ xTAx− λmin/2 ≥ λmin/2 > 0. We have shown that xTMx ≥ 0 for any unit
normed x thus M is positive semidefinite. This completes the proof.

The real vector space Sn has dimension
(
n+1
2

)
. We equip this vector space with the (trace)

inner product

〈A,B〉 := Tr[AB] =
∑

1≤i,j≤n
AijBij .

With this inner product the cone Sn
+ is self-dual, meaning that (Sn

+)∗ = Sn
+.

Theorem 3.2. With the trace inner product on Sn we have (Sn
+)∗ = Sn

+.

Proof. By definition (Sn
+)∗ = {B ∈ Sn : Tr(AB) ≥ 0 ∀A ∈ Sn

+}. We first show that Sn
+ ⊆

(Sn
+)∗. Assume B is positive semidefinite. The eigenvalue decomposition of B takes the form

B =
∑n

i=1 λiviv
T
i where λi ≥ 0 for i = 1, . . . , n and the vi are the unit-normed eigenvectors of

B. Now for any A ∈ Sn
+ we have Tr(AB) =

∑n
i=1 λi Tr(Aviv

T
i ) =

∑n
i=1 λiv

T
i Avi. Since A ∈ Sn

+

we have vTi Avi ≥ 0 for all i = 1, . . . , n and thus, since λi ≥ 0 we get Tr(AB) ≥ 0. This shows
Sn
+ ⊆ (Sn

+)∗.
To show the reverse inclusion, assume B ∈ Sn is such that Tr(AB) ≥ 0 for all A ∈ Sn

+.
We want to show that B is positive semidefinite. By taking A = xxT for any x ∈ Rn we get
that Tr(xxTB) = xTBx ≥ 0. This is true for all x ∈ Rn and thus shows that B is positive
semidefinite.

Theorem 3.3. The extreme rays of Sn
+ are the rays spanned by rank-one matrices, i.e., of the form

Sx = {λxxT , λ ≥ 0} where x ∈ Rn.

Proof. We first show that any ray spanned by a matrix of the form xxT is extreme for Sn
+. Then

we will show that these are the only ones.
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• Assume A,B ∈ Sn
+ are such that A + B = λxxT for some λ ≥ 0. We need to show that A

and B are both a multiple of xxT . Let u be any vector orthogonal to x, i.e., uTx = 0. Then
0 ≤ uTAu ≤ uT (A + B)u = uT (λxxT )u = 0. Thus for any u ∈ {x}⊥ we have uTAu = 0
which implies, since A � 0, u ∈ ker(A). Since im(A) = ker(A)⊥ for any symmetric matrix A
we get im(A) = ker(A)⊥ ⊆ span(x). This means that A is of the form A = λxxT . One can
show in a similar way that B is a nonnegative multiple of xxT .

• We now show that these are the only extreme rays. Consider a ray S = {λA : λ ≥ 0} spanned
by some matrix A ∈ Sn

+. If rank(A) ≥ 2, an eigenvalue decomposition allows us to express A
as a sum of elements that are not in S which shows that S cannot be an extreme ray.

Conic programming

Definition 3.1. A cone K ⊆ Rn is called proper if it is closed, convex, pointed and has nonempty
interior.

From Theorem 2.3 and Question 9 in the first exercise sheet, we know that the dual of a proper
cone is also proper. The positive semidefinite cone is an example of a proper cone.

Let K ⊆ Rn be a proper cone. A conic program over K is an optimisation problem of the form:

minimise 〈c, x〉
subject to Ax = b

x ∈ K
(1)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The optimisation variable here is x ∈ Rn. The feasible
set is the set of x ∈ Rn that satisfy the constraints x ∈ K and Ax = b. The feasible set is the
intersection of the cone K with an affine space {x ∈ Rn : Ax = b} and thus is a closed convex set
as an intersection of closed convex sets.

Linear programming

A linear program is a conic program over the cone K = Rn
+ (nonnegative orthant). The constraint

x ∈ Rn
+ means that xi ≥ 0 for i = 1, . . . , n. We will often use the abbreviation x ≥ 0 to denote that

xi ≥ 0 for i = 1, . . . , n (here x ∈ Rn). So a linear program is a problem of the form:

minimise 〈c, x〉
subject to Ax = b

x ≥ 0
(2)

For example the following optimisation problem is a linear program:

minimise 2x1 + x2 s.t. 3x1 − x2 = 1, x1 ≥ 0, x2 ≥ 0.

This optimisation problem is an instance of (1) where K = R2
+, the cost vector is c =

[
2
1

]
, the

matrix A is 1× 2 given by A =
[
3 −1

]
and b = 1.

Despite their apparent simplicity, linear programs have applications in many areas of applied
sciences, engineering and economics. What makes linear programming appealing is that there are
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efficient algorithms to solve such optimisation problems. Problems with thousands (even millions)
of constraints can be easily solved on a personal computer using current algorithms.

Note: Historically, linear programming appeared in 1940s, much earlier than conic programs.
Conic programs were introduced in 1990s as a generalisation of linear programming and were shown
to enjoy some of the nice theoretical (and sometimes computational) properties of linear program-
ming. For more historical information, see the bibliography section of Chapter 4 in Boyd & Van-
denberghe.

Any linear program can be put in the following form, known as “inequality form” (the form (2)
is known as “standard form”):

minimise
z∈Rk

〈e, z〉

subject to Fz + g ≥ 0
(3)

where e ∈ Rk, F ∈ Rn×k and g ∈ Rn. To go from (2) to (3), let g be a point in the affine
subspace {x ∈ Rn : Ax = b} and let F be a matrix whose columns form a basis of ker(A). Then
{x ∈ Rn : Ax = b} = {Fz+ g : z ∈ Rk} (where k = dim ker(A)). Problem (2) is thus equivalent to:

minimise
z∈Rk

〈c, Fz + g〉 s.t. Fz + g ≥ 0. (4)

If we let e = F T c and note that 〈c, g〉 is a constant, we see that (4) is equivalent to (3).
The feasible set of (3) is a polyhedron, i.e., an intersection of a finite number of halfspaces; the

halfspaces here are defined by fTi z+gi ≥ 0 (i = 1, . . . , n) where fT1 , . . . , f
T
n are the rows of F . Thus

we see that geometrically, linear programming is the problem of optimizing a linear function over
a polyhedron.

An example from signal processing We now give a simple example of a linear program that
has attracted a lot of attention in the signal processing community. Let M ∈ Rm×n and d ∈ Rm

with m < n. We are interested in finding a solution to Mx = d that has the smallest `1 norm.
Recall that the `1 norm of a vector is given by ‖x‖1 =

∑n
i=1 |xi|. In other words, we want to solve

the optimisation problem
minimise

x∈Rn
‖x‖1 s.t. Mx = d. (5)

Problem (5), as written, is not a linear program since the cost function is not linear. We will see
however that by adequately introducing new variables we can express it as a linear program. We
first claim that (5) is “equivalent” to the following problem:

minimise
x,y∈Rn

n∑
i=1

yi s.t. Mx = d, y + x ≥ 0, y − x ≥ 0. (6)

What we will show is that any solution to (5) can be converted to a solution of (6) and vice-versa.

Claim 1. If x ∈ Rn satisfies Mx = d then there is y ∈ Rn that satisfies the constraints of
(6) and such that

∑n
i=1 yi ≤ ‖x‖1. Conversely if x, y ∈ Rn satisfy the constraints of (6) then

‖x‖1 ≤
∑n

i=1 yi. As a consequence the optimal values of (5) and (6) are equal.

Proof. For the first direction take yi = |xi| and note that yi + xi ≥ 0 and yi − xi ≥ 0 and∑n
i=1 yi = ‖x‖1. For the other direction note that if x, y ∈ Rn satisfy the constraints of (6) then

|xi| = max(xi,−xi) ≤ yi and so ‖x‖1 ≤
∑n

i=1 yi.

4



Problem (6) is now much closer to being a linear program in the form (2), however it is not yet
exactly in the form (2). We now show how to put it exactly in the form (2). If we define u = y+ x
and v = y − x then problem (6) can be rewritten as

minimise
u,v,x,y∈Rn

n∑
i=1

yi s.t.


Mx = d

u = y + x

v = y − x
u ≥ 0, v ≥ 0

(7)

Problem (7) is almost of the form (2) except for a small difference: in (2) the variables are all
constrained to be nonnegative, whereas in (7) only the variables u, v are nonnegative (and x and
y can take arbitrary signs). However one can actually eliminate the variables x, y from the linear
program (7) since x = (u− v)/2 and y = (u+ v)/2. Problem (7) is thus equivalent to:

minimise
u,v∈Rn

1

2

n∑
i=1

(ui + vi) s.t. M(u− v) = 2d, u ≥ 0, v ≥ 0. (8)

Now this is a linear program in the form (2) with the following choice of matrix A and vectors b
and c:

A =
[
M −M

]
∈ Rm×2n, b = 2d ∈ Rm, c = (1, . . . , 1) ∈ R2n.

The conversion from a problem (6) to its LP standard form can be a bit tedious. From now on,
we will not do this conversion anymore and it will be taken for granted that problem (6) for example
is a linear program (the step of going from (5) to (6) however is less trivial and so cannot be taken
for granted in general). It will be assumed that the reader can do the “mechanic” conversion from
(6) to a standard linear programming form (2) if needed.
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